Вернуться
276
Вы можете возразить, что существует и другой кандидат на роль «высокоэнтропийного состояния»: хаотичное месиво, в которое наша Вселенная эволюционирует, если позволить ей сжаться. (Или, что эквивалентно, если взять типичное микросостояние, совместное с текущим макросостоянием Вселенной, и прокрутить часы в обратную сторону.) Действительно, такое состояние намного более комковатое, чем наша текущая Вселенная, так как в процессе сжатия формируются сингулярности и черные дыры. Но в этом-то и суть: даже среди тех состояний, которые упаковывают всю текущую Вселенную в очень маленькую область, лишь невероятно малая доля принимает форму гладких участков, где доминирует темная суперэнергия, то есть выполняются условия, необходимые для инфляции. Большинство подобных состояний, наоборот, характеризуются условиями, в которых квантовая теория поля неприменима, поскольку их абсолютно невозможно описать без квантовой гравитации. Однако заявление: «мы не знаем, как описывать такие состояния» – это совершенно не то же самое, что «такие состояния не существуют» или даже «мы можем игнорировать такие состояния, если перечислим все возможные начальные состояния Вселенной». Если динамика обратима, у нас нет другого выбора, кроме как относиться к подобным состояниям со всей серьезностью.
Вернуться
277
См., например, Guth, A. H. The Inflationary Universe: The Quest for a New Theory of Cosmic Origins. Reading: Addison – Wesley, 1997.
Вернуться
278
Pascal, B. Pensées. Translated by A. J. Krailsheimer. New York: Penguin Classics, 1995.
Вернуться
279
Было бы еще лучше, если бы какой-нибудь молодой человек или девушка прочитали эту книгу, уверовали бы, что это серьезная проблема, стоящая нашего внимания, и принялись бы за ее решение. Хотя и не обязательно молодой – возраст на самом деле совершенно не важен. В любом случае, если вы вдруг придумаете объяснение стрелы времени, которому удастся заслужить одобрение всего физического сообщества, пожалуйста, дайте мне знать, есть ли в этом какая-либо заслуга моей книги.
Вернуться
280
Пожалуй, ближайшей аналогией будет сценарий «голографической космологии», в защиту которого выступают Том Бэнкс и Вилли Фишлер ( Banks, T., Fischler, W. Holographic Cosmology 3.0 // Physica Scripta , 2005, T117, p. 56–63; см. также Banks, T. Entropy and Initial Conditions in Cosmology (2007). http://arxiv.org/abs/ hep- th/0701146). Они предполагают, что эффективные динамические законы квантовой гравитации могут очень сильно отличаться в разных пространствах – временах. Другими словами, сами законы физики могут зависеть от времени. Это спекулятивный сценарий, но на него стоит обратить внимание.
Вернуться
281
Похожая стратегия заключается в том, чтобы постулировать определенную форму волновой функции Вселенной, как сделали, например, Джеймс Хартл и Стивен Хокинг ( Hartle, J. B., Hawking, S. W. Wave Function of the Universe // Physical Review D, 1983, 28, p. 2960–2975). Они полагаются на подход, известный под названием евклидовой квантовой гравитации (но попытки оценить преимущества и недостатки данного подхода уведут нас слишком далеко от вопросов, которыми мы интересуемся в настоящий момент). Согласно их предположению, из волновой функции Хартла – Хокинга следует, что наша Вселенная должна быть однородной вблизи Большого взрыва, что объясняет стрелу времени ( Halliwell, J. J., Hawking, S. W. Origin of Structure in the Universe // Physical Review D, 1985, 31, p. 1777), но верность приближения, используемого для получения данного результата, не совсем ясна. Лично я подозреваю, что волновая функция Хартла – Хокинга предсказывает, что мы должны жить в пустом пространстве де Ситтера – точно к такому же результату мы пришли, когда рассматривали энтропию обычным образом.
Вернуться
282
Penrose, R. Singularities and Time-Asymmetry / In: General Relativity, and Einstein Centenary Survey / S. W. Hawking, W. Israel (eds.). Cambridge: Cambridge University Press, 1979, p. 581–638. Если глубже копнуть математический формализм, описывающий искривленность пространства – времени, вы обнаружите, что кривизна бывает двух видов: есть «кривизна Риччи», названная так в честь итальянского математика Грегорио Риччи-Курбастро, и «кривизна Вейля», получившая свое название в честь немецкого математика Германа Вейля. Кривизна Риччи тесно связана с материей и энергией в пространстве – времени: если хоть какое-то вещество есть, кривизна Риччи отлична от нуля, а если ничего нет, то и кривизна Риччи пропадает. Кривизна Вейля, с другой стороны, может существовать сама по себе; например, гравитационная волна свободно распространяется сквозь пространство, порождая кривизну Вейля, но не кривизну Риччи. Гипотеза кривизны Вейля утверждает, что сингулярностям в одном направлении во времени всегда соответствует нулевая кривизна Вейля, тогда как сингулярности в противоположном направлении ничем не ограничены. Можно даже использовать такие описательные характеристики, как начальные и конечные сингулярности, так как направлению с низкой кривизной Вейля всегда будет соответствовать низкая энтропия.
Читать дальше
Конец ознакомительного отрывка
Купить книгу