Мэрилин вос Савант ответила, что нужно переменить решение и выбрать последнюю дверь, поскольку шанс того, что именно за ней будет машина, равен 2 к З.
Если вы воспользуетесь интуицией, то решите, что шансы 50:50, и придете к выводу, что машина может оказаться за любой из двух дверей.
Очень много людей написали в журнал специально для того, чтобы сказать Мэрилин вос Савант, что она неправа. Таких писем было 92 %, и многие из них написаны математиками и другими разными учеными. Вот примеры того, что в них говорилось.
«Я крайне удручен тем фактом, что общественность столь слабо разбирается в математике. Пожалуйста, признайте, что вы неправы.
Роберт Сачс, д-р философии, университет Джорджа Мэйсона»
«Математическая неграмотность просто поражает. И это называется высочайшим уровнем интеллекта. Стыдитесь!
Скотт Смит, д-р философии, университет Флориды»
«По крайней мере, три математика указали вам на ошибку. Но вы продолжаете настаивать на своем.
Кент Форд, Государственный университет Дикинсона»
«Могу поспорить, что вы получили множество писем от профессоров и студентов колледжей и высших школ. Рекомендую вам сохранить хотя бы несколько адресов, дабы впоследствии иметь возможность консультироваться с этими людьми.
У. Роберт Смит, д-р философии. Государственный университет Джорджии»
«Вы категорически неправы… Сколько же нужно разгневанных математиков, чтобы вы переменили мнение?
Е. Рэй Бобо, д-р философии, университет Джорджтауна»
«Если окажется, что все эти доктора наук были неправы, я сочту, что страна находится в серьезной опасности.
Эверетт Харман, д-р философии. Исследовательский институт Вооруженных сил США»
Но Мэрилин вос Савант была права, и существует 2 способа это доказать.
Во-первых, это можно сделать при помощи математики. Вот таким образом:
Назовем двери X, Y и Z.
Пусть С хбудет обозначением того факта, что машина находится за дверью X, — и так далее.
Пусть Н хбудет обозначением того факта, что ведущий открывает дверь X, — и так далее.
Предположим, что вы выбрали дверь X; вероятность того, что вы выиграете машину, если вы перемените свое решение, выражена в следующей формуле:
Р(Н Z^ С Y) + Р(Н Y^ С Z) = Р(С Y). Р(Н Z| С Y) + Р(С Z). Р(Н Y| С Z) = (1/3.1) + (1/3.1) = 2/3.
Второй путь — это проиллюстрировать возможные исходы такой вот таблицей:
Таким образом, если вы меняете решение, у вас два шанса из трех получить машину. Если же вы настаиваете на первоначальном решении, то у вас один шанс из трех.
И это показывает, что интуиция иногда может быть ошибочной. Интуиция — это то, что люди используют в жизни, чтобы принимать решения. Но найти правильный ответ помогает логика.
И еще это доказывает, что мистер Дживонс был неправ: числа иногда оказываются очень сложными и вовсе не точными. Вот почему мне нравится «Загадка Монти Холла».
Когда я вернулся домой, там был Родри. Родри — это человек, который работает на отца, помогает ему чинить приборы и сантехнику. Иногда он приходит к нам по вечерам, чтобы выпить с отцом пива, посмотреть телевизор и побеседовать.
Родри носит белые рабочие брюки, которые все покрыты грязными пятнами, и золотое кольцо на среднем пальце левой руки. От него пахнет чем-то, что я не знаю, как называется. От отца всегда пахнет так же, когда он приходит с работы.
Я положил свои лакричные палочки и молочную плитку в специальную коробку для еды, которая стоит на полке и которую отцу не разрешается трогать, потому что это мое.
Потом отец спросил:
— И где же это ты гулял, юноша?
Я сказал:
— Зашел в магазин за лакричными палочками и молочной плиткой.
А он ответил:
— Что-то ты долго ходил.
Я сказал:
— Я разговаривал с собакой миссис Александер у магазина. Я погладил ее, и она стала нюхать мои брюки.
И это была еще одна белая ложь.
Потом Родри сказал:
— Боже, ты скоро получишь третью степень, да?
Но я не знаю, что такое третья степень .
А потом он спросил:
— Как дела, капитан?
И я сказал:
— Хорошо, спасибо. — Потому что так нужно отвечать в подобных случаях.
А он спросил:
— Сколько будет, если 251 умножить на 864?
Я немного подумал и сказал:
— 216 864, — потому что это очень просто: нужно умножить 864на 1000, что равно 864 000; потом ты делишь это на 4,что равно 216 000, и это будет то же самое, что 250умножить на 864; потом ты просто прибавляешь 864, чтобы получить 251, умноженное на 864, — получается 216 864. — И я спросил: — Правильно?
Читать дальше
Конец ознакомительного отрывка
Купить книгу