к оглавлениюследовательно, есть эмерджентное свойство; не имеет смысла приписывать энтропию точному микросостоянию системы.
Следующий шаг заключается в установлении связи энтропии с вероятностью. Вы можете сделать это, предположив, что все микросостояния одинаково вероятны. Это физический постулат, оправданный тем фактом, что атомы в газе находятся в хаотическом движении, которое имеет тенденцию перетасовывать их и, следовательно, хаотизировать их движения. Чем больше имеется способов сделать макросостояние из микросостояний - то есть, чем выше энтропия макросостояния - тем более вероятно, что это макросостояние реализуется. Самое вероятное макросостояние, с учетом того, что микросостояния случайны, называется состоянием равновесия. Равновесие также является состоянием с наивысшей энтропией.
Разберем кота на составляющие его атомы и смешаем хаотически указанные атомы с атомами воздуха в помещении. Имеется намного больше микросостояний, в которых атомы кота случайно смешаны с воздухом, чем микросостояний, где кот воссоздан и сидит на кушетке, облизывая свой мех и мурлыкая. Кот есть в высшей степени маловероятный способ расположения атомов, следовательно, он имеет низкую энтропию и высокую информацию по сравнению с хаотической смесью тех же атомов с воздухом.
Атомы в газе двигаются хаотично, часто сталкиваясь. Когда они сталкиваются, они посылают друг друга прочь, двигаясь в более-менее случайных направлениях. Так что со временем проявляется тенденция к перемешиванию микросостояний. Если микросостояние сначала не хаотично, оно довольно скоро станет таковым. Это наводит на мысль, что если мы стартуем от состояния с низкой энтропией, отличающегося от состояния равновесия, то самой вероятной вещью с течением времени будет то, что микросостояние станет более случайным, повышая энтропию. Это утверждение второго закона термодинамики .
Чтобы увидеть теперь, как это работает, рассмотрим простой эксперимент. Нам нужна колода карт и игрок. Предположим, что когда эксперимент начинается, карты разложены по порядку. После этого все, что происходит, это что один раз за каждую секунду карты перетасовываются игроком. Эксперимент заключатся в наблюдении, что происходит с порядком карт, когда они раз за разом перетасовываются.
Карты стартуют упорядоченными, но каждая перетасовка делает расположение карт все более и более случайным. Энтропия имеет тенденцию расти. После достаточного количества перетасовок
к оглавлениюневозможно назвать порядок кроме как чисто случайным порядком; следовательно, любая память о начальном упорядочении, по существу, теряется.
Эта тенденция к распаду порядка в направлении беспорядка фиксируется вторым законом термодинамики. В этом смысле закон говорит, что перетасовка колоды карт будет приводить к разрушению любого специального упорядочения карт, которое мы могли иметь изначально, с заменой его случайным упорядочением.
Энтропия не всегда возрастает. Каждый раз через какое-то время перетасовка будет снижать энтропию - например, путем возврата карт к оригинальному упорядочению. Просто намного более вероятно для перетасовки упорядоченной колоды повысить энтропию, чем понизить ее. Чем больше карт в колоде, тем менее вероятно, что перетасовка произведет полное переупорядочение. Следовательно, тем больше будут интервалы между перетасовками, которые полностью упорядочивают колоду. Тем не менее, пока число карт в колоде конечное, имеется время, после которого перетасовки, имеющие место раз в секунду, вероятно, произведут полное переупорядочение. Оно называется временем повторений Пуанкаре . Если вы наблюдаете за системой в течение более коротких времен, вы, вероятно, увидите только рост энтропии. Но посмотрите за системой дольше, чем время повторений Пуанкаре, и вы, вероятно, увидите, как энтропия с тем же успехом снижается.
История о роли хаотизации в упорядочении карт может быть перенесена на газ. Упорядоченные конфигурации атомов в газе существуют, например, такие конфигурации, в которых все атомы находятся на одной стороне ящика и все движутся в одном направлении. Эти конфигурации аналогичны тем, в которых карты упорядочены. Но, хотя эти упорядоченные конфигурации атомов существуют, они намного более редкие, чем конфигурации, в которых атомы случайно размещены по ящику и двигаются в случайных направлениях.
Если мы стартуем из положения, когда все атомы в одном углу ящика и все двигаются одним и тем же путем, мы увидим, что по мере их движения и рассеивания друг на друге они распределятся по ящику, заполнив его целиком. После некоторого времени положения атомов будут полностью перетасованы, так что плотность атомов в ящике станет равномерной.
Читать дальше