В последующие годы, когда ученые начали находить другие решения уравнений Эйнштейна, загадка лишь усложнилась. В 1917 г. голландский физик Виллем де Ситтер заметил, что уравнения Эйнштейна обладают одним странным свойством: Вселенная, вообще лишенная всякого вещества, расширяется! Все, что было для этого необходимо, – космологическая константа – энергия вакуума, которая, собственно, и должна была обеспечивать существование такой Вселенной. Это встревожило Эйнштейна – ведь он, как Мах до него, все еще верил, что природа пространства-времени должна определяться вещественным содержанием Вселенной. Но здесь фигурировала Вселенная, которая расширялась вообще без всякого вещества, и для этого ей достаточно было одной только темной энергии.
Последние радикальные шаги в этом направлении сделали советский математик Александр Фридман в 1922 г. и бельгийский священник Жорж Леметр в 1927 г.; они показали, что расширяющаяся Вселенная получается из уравнений Эйнштейна естественным образом. Фридман получил решение уравнений Эйнштейна, начинавшееся с гомогенной изотропной Вселенной, радиус которой то увеличивается, то уменьшается. (К несчастью, Фридман умер в 1925 г. в Ленинграде от тифа, не успев завершить работу.) В картине Фридмана – Леметра в зависимости от начальной плотности Вселенной существуют три возможных решения. Если плотность Вселенной больше определенной критической величины, то ее расширение со временем будет остановлено гравитацией, и Вселенная начнет сжиматься. (Критическая плотность примерно соответствует десяти атомам водорода на кубический метр.) В такой Вселенной общая кривизна положительна (напомним, что положительную кривизну имеет, к примеру, сфера). Если плотность меньше критической величины, то силы гравитации окажется недостаточно, чтобы остановить расширение Вселенной, и она будет расширяться до бесконечности. (В конце концов, Вселенная остынет почти до абсолютного нуля; это явление известно как «большое замерзание».) Кривизна такой Вселенной отрицательна (отрицательную кривизну имеют, к примеру, седловидная поверхность или рожок). Наконец, существует возможность того, что плотность Вселенной окажется в точности равна критической (при этом она тоже будет бесконечно расширяться). В этой Вселенной кривизна равна нулю, то есть она плоская. Получается, что судьбу Вселенной, в принципе, можно определить, просто измерив ее среднюю плотность.
Новые решения сбивали с толку, поскольку теперь в наличии имелось по крайней мере три космологические модели, описывающие развитие Вселенной (Эйнштейна, де Ситтера и Фридмана – Леметра). Вопрос пребывал в подвешенном состоянии до 1929 г., пока его не разрешил астроном Эдвин Хаббл, чем потряс основы астрономии. Он первым начал разрушать теорию Вселенной с одной-единственной Галактикой, продемонстрировав существование других галактик далеко за пределами Млечного Пути [22]. Вселенная, вместо уютного сообщества из сотни миллиардов звезд, собранных в одну Галактику, теперь содержала миллиарды галактик с миллиардами звезд в каждой. Всего за один год «население» Вселенной испытало поистине взрывной рост. Хаббл обнаружил, что потенциально во Вселенной существуют миллиарды иных галактик, из которых ближайшей к нам является галактика в созвездии Андромеды на расстоянии около 2 млн световых лет от Земли. (Надо сказать, что слово «галактика» происходит от греческого слова «молоко»; греки считали, что Млечный Путь – это молоко, пролитое богами на ночное небо.)
Одного этого шокирующего заявления было бы достаточно, чтобы обеспечить Хабблу славу одного из гигантов астрономии. Но Хаббл пошел еще дальше. В 1928 г. он совершил судьбоносную поездку в Голландию и встретился там с де Ситтером, который утверждал, что общая теория относительности Эйнштейна предсказывает расширяющуюся Вселенную с очень простым соотношением между расстоянием и красным смещением. Чем дальше галактика находится от нас, тем быстрее она должна удаляться. (Это красное смещение не следует путать с гравитационным красным смещением, которое рассматривал Эйнштейн в 1915 г. Красное смещение в спектре галактик возникает из-за того, что галактики удаляются от Земли в расширяющейся Вселенной. Если желтая звезда, к примеру, движется от нас прочь, то скорость ее света остается постоянной, а вот длина волны этого света «растягивается», так что цвет звезды слегка краснеет. Аналогично, если желтая звезда приближается к Земле, длина волны ее света сжимается, как меха аккордеона, а ее цвет смещается в сторону синего.)
Читать дальше
Конец ознакомительного отрывка
Купить книгу