Именно в институте Battelle были достигнуты почти все важные первые успехи в электрофотографии. Многие сотрудники института по-прежнему скептически относились к идее Карлсона, но число ученых, посвятивших себя проекту, постоянно росло. «Некоторое время у нас в группе не было ни одного ученого со степенью доктора, – говорил Роланд Шафферт. – А происходило вот что: в институт Battelle брали докторов химии или физики для каких-то других проектов. Рано или поздно эти люди должны были пройти мимо нашей лаборатории. Любопытство заставляло их входить, чтобы посмотреть, чем мы тут занимаемся. Или они слышали о нашей работе во время разговоров за обеденным столом. Многие были заинтригованы, как только узнавали, над чем мы работаем.
Одним из таких ученых был Уильям Биксби, физик, который пришел в Battelle в 1946 году и стал интересоваться проблемами, которые испытывал полиграфический отдел с фоторецепторами. В начале 1947 года он принимал прямое участие в отчаянных попытках воспроизвести пресловутую страницу 142, иногда во внерабочее время с помощью своей жены. Пытаясь справиться с этой проблемой, он попутно сделал открытие, которое стало значительным шагом на пути к разработке жизнеспособной копировальной машины.
В первых экспериментах с электрофотографией в Battelle полагались на те же фотопроводящие материалы, которые Карлсон и Корнеи использовали в Квинсе, то есть серу и антрацен. Корнеи за короткий период работы у Карлсона, разработал метод нанесения покрытия на форму путем испарения – он нагревал белые хлопья антрацена в стеклянном сосуде, и пары антрацена конденсировались на пластине, расположенной над ним, но его результаты были неустойчивыми. Ученые Battelle быстро усовершенствовали этот процесс, производя испарение в вакуумной камере. Этот способ также был пригоден для серы.
Однако основная проблема осталась. Антраценовое покрытие работало лучше, чем покрытие из серы, но оба материала при копировании требовали длительного экспонирования и производили посредственные отпечатки, и ученые Battelle поняли, что необходимо найти что-нибудь более приемлемое. Теоретически многообещающим материалом был селен – кристаллический элемент цвета ружейного металла, который занимает в Периодической таблице Менделеева место как раз ниже серы [20]. Карлсону были известны фотопроводящие свойства селена, так как селен использовался в фотоэлементах уже в течение десятков лет, и Корнеи сделал несколько пластин с селеновым покрытием. Но покрывающий слой получался у него грубым и неровным, и селен не удерживал заряд. «Опыты будут продолжены», – написал Корнеи в лабораторном журнале в конце своего шестимесячного периода работы, хотя не делал дальнейших попыток. Потом Карлсон пытался комбинировать селен и серу, но тоже получал неутешительные результаты.
В Battelle уже имели значительный опыт работы с селеном, как результат предыдущего проекта, связанного с плавлением меди, побочным продуктом которого был селен. Биксби обнаружил, что только один вид селена, некристаллическая форма, известная как аморфный селен, имел требуемые фотопроводящие характеристики и что добавление его небольших количеств в серу или антрацен улучшало результаты обоих материалов. Он также обнаружил, что можно получить очень качественное покрытие, используя для этого вакуумное устройство напыления и тщательно контролируя температуру материалов. Чем больше селена он добавлял в смесь, тем лучше становились результаты, пока селен не достигал определенной концентрации и результаты не начинали ухудшаться, и этого эффекта он не понимал. «После нескольких безуспешных попыток, – вспоминал Джек Кинселла, бывший сотрудник фирмы Xerox, – его контролер настоял на том, чтобы он оставил селен в покое и занялся другими вариантами».
Однако Биксби однажды пришло в голову, что причина кроется в общем освещении. Возможно, аморфный селен был настолько чувствительным фотопроводником, что даже специально приглушенного света в его лаборатории было достаточно, чтобы частично разрядить селеновые формы перед тем, как их смогут экспонировать через копируемое изображение, и эта проблема усложнялась по мере увеличения концентрации селена. Он установил красные лампы безопасного освещения, как в темных комнатах фотолабораторий, и обнаружил, что качество изображения резко улучшилось. Фактически он открыл, что чистый селен был почти в тысячу раз чувствительнее серы и антрацена и также более чувствительным, чем любая комбинация этих трех материалов.
Читать дальше
Конец ознакомительного отрывка
Купить книгу