– Вы со мной пойдете?
Фейнман хмыкнул. Мы двинулись к столу. Пока я нагружал тарелку, он приглядывал. Поначалу нас вроде бы никто не замечал, но вдруг некто в смокинге встал за нами.
– Вы со стороны жениха или невесты? – поинтересовался мужчина.
– Ни с той, ни с другой, – ответил Фейнман. Человек оглядел нас. Мысленно я заметался – подыскивал, что бы такое соврать, дабы смягчить неловкость. Но тут Фейнман добавил: – Мы представляем факультет физики.
Человек улыбнулся, положил себе салата и ушел, с виду не озадачившись ни этим ответом, ни нашим облаченьем.
Сохранять игривость, получать удовольствие, смотреть на все молодо. Мне было ясно, что для Фейнмана открытость всем возможностям природы и жизни – ключ и к творчеству, и к счастью.
Я спросил его:
– Становиться зрелым – глупо?
Он задумался. Пожал плечами.
Неуверен. Но для творческого процесса важна игра. Во всяком случае, для некоторых ученых. С возрастом ее труднее поддерживать. Становишься менее игривым. Но так нельзя, конечно.
У меня много математических задачек развлекательного толка, всякие словечки, в которые я играю и с которыми время от времени работаю. Например, о счислении я впервые услышал в старших классах и узнал о формуле производной функции. И для второй производной, и для третьей… И тут я заметил закономерность, верную для n-производной, неважно, чему целочисленное n равно – одному, двум, трем и так далее.
Но потом я задался вопросом: а что с «половинными» производными? Я хотел такую операцию, которая дает новую функцию, когда ее проделываешь с функцией, а если сделать ее дважды, получаешь обычную первую производную функции. Знаете такую операцию? Я ее изобрел, когда учился в старших классах. Но я тогда не умел ее рассчитывать. Я же школьник был, знал только, как ее определить. А рассчитать не мог ничего. Няне знал, как вообще что делается, чтобы проверить. Просто определил. И только потом, когда уже в университете учился, взялся заново. Изрядно развлекся. И обнаружил, что мое исходное определение, которое я в школе придумал, – верное. Подходит.
А потом, когда работал в Лос-Аламосе над атомной бомбой, видел, как народ возится со сложным уравнением. И понял, что их формула связана с моей полупроизводной. Ну, я придумал численную операцию для решения, применил – сработало. Мы ее применили дважды, что, по сути, обычная производная. А я изобрел изящный метод решения их уравнения. Все – ну, не совсем все, но многое – пригождается. Главное в это играть.
Творческий ум – просторный чердак. Та задачка из домашней работы в колледже, та занимательная, но вроде бы бестолковая статья, с которой ты неделю разбирался после защиты, та небрежная реплика коллеги – все это хранится в сундуках где-то наверху, в мозгу творческого человека, и бессознательное частенько за ними лазает и применяет в самые неожиданные моменты. Это часть творческого процесса, который шире физики. К примеру, Чайковский писал: «Обыкновенно вдруг, самым неожиданным образом, является зерно будущего произведения. Если почва благодарная…» [9]Мэри Шелли: «Сочинители не создают своих творений из ничего, а всего лишь из хаоса» [10]. Стивен Спендер: «Все, нами вообразимое, нам известно. А наша способность воображать есть способность вспоминать уже пережитое нами и способность применять это к другим обстоятельствам» [11].
Еще одно очень интересное развлечение – спрашивать себя, что бы произошло, если бы я мог как-то изменить природу, изменить физический закон? Прежде всего, если бы я мог что-то изменить, это изменение должно согласовываться с кое-какими другими вещами. А еще придется продумать все последствия такого измененного закона и понять, что произойдет в результате с миром. Интересная работа. Большая. Я разок попробовал – захотел посмотреть, какая вышла б физика, если бы она была двухмерная, а не трехмерная. Два измерения – евклидова плоскость плюс время. А там же еще очень, очень интересные явления – поведение атомов, линии их спектров, например. Я перебрал множество штук, которые в двух измерениях иные, нежели в трех. Очень интересно. У меня записано в блокноте. Очень развлекся , потея возился.
Под линиями спектра Фейнман подразумевает характеристический свет, испускаемый атомом. Добавку еще двух измерений к существующим я представил легко. Для своей диссертации я тоже изучал, как что меняется при изменении мерности пространства – вплоть до бесконечного количества измерений. Это как новые направления добавлять. В одном измерении есть только вперед и назад. Второе добавляет влево и вправо. Третье – вверх – вниз. Каждое новое измерение просто добавляет одно дополнительное независимое направление (для некоторых – дополнительную возможность заблудиться). Приятно было думать, что воображение позволяет нам представить подобные альтернативные миры. Но к тому, куда Фейнман меня дальше заведет, я оказался не готов…
Читать дальше
Конец ознакомительного отрывка
Купить книгу