К сожалению, как видно по результатам экзаменов Эйнштейна в Цюрихском политехникуме, в неевклидовой геометрии он был не слишком силен. К счастью, в Цюрихе у него нашелся старый друг и одноклассник, который как раз хорошо ее знал.
Когда Эйнштейн вернулся из Праги в Цюрих в июле 1912 года, один из первых визитов он нанес своему другу Марселю Гроссману – составителю конспектов, которыми пользовался и Эйнштейн, когда пропускал математические классы в Цюрихском политехникуме. По двум геометрическим курсам в Политехникуме Эйнштейн получил 4,25 из 6. Гроссман, напротив, по обоим геометрическим курсам получил высший балл – 6, написал диссертацию по неевклидовой геометрии, опубликовал семь статей по этой теме. В 1912 году он занимал пост декана математического факультета 7.
Эйнштейн сказал ему: “Гроссман, ты должен помочь мне, или я сойду с ума”. Он объяснил, что ему нужен математический аппарат, с помощью которого можно было бы описать гравитационное поле, а возможно, даже установить законы, которым оно подчиняется. Эйнштейн вспоминал о реакции Гроссмана на этот призыв: “Он мгновенно загорелся” 8.
До тех пор научный успех Эйнштейна основывался на его уникальном чутье, позволявшем ему ощущать основные физические законы природы, а найти лучшее математического описание этих законов казалось ему менее сложным и интересным делом, и он оставлял это другим. Например, подобную задачу в отношении специальной теории относительности выполнил его цюрихский коллега Минковский.
Но к 1912 году Эйнштейн пришел к выводу, что математика может быть полезным инструментом не только для описания законов природы, но и для их открытия. Математика была сценарием, по которому действует природа. “Основная идея общей теории относительности состоит в том, что гравитация возникает из кривизны пространства – времени, – говорит физик Джеймс Хартл. – Гравитация – это и есть геометрия” 9.
“Сейчас я работаю исключительно над проблемами гравитации, и мне кажется, что с помощью здешнего друга-математика я смогу преодолеть все трудности, – писал Эйнштейн физику Арнольду Зоммерфельду, – у меня возникло огромное уважение к математике, наиболее сложные разделы которой я до сегодняшнего дня по своему невежеству считал чистым излишеством!” 10
После разговора с Эйнштейном Гроссман отправился домой, чтобы подумать о проблеме, и, когда просмотрел соответствующую литературу, вернулся к Эйнштейну и порекомендовал ему неевклидову геометрию [48], которая была разработана Бернгардом Риманом 11.
Риман (1826–1866) был вундеркиндом, который в возрасте четырнадцати лет изобрел вечный календарь и подарил его родителям. Он продолжил учебу в крупном германском центре математической науки – Геттингене – под руководством Карла Фридриха Гаусса, первым заинтересовавшегося геометрией искривленных поверхностей. Эту тему Гаусс предложил Риману в качестве диссертационной, и результаты этой работы впоследствии изменили не только геометрию, но и физику.
Геометрия Евклида описывает плоские поверхности, а на искривленных поверхностях она перестает быть справедливой. Например, сумма углов треугольника, нарисованного на плоской странице, равна 180°. Но посмотрите на глобус и представьте себе треугольник, образованный экватором в качестве основания, меридианом, проходящим от экватора к Северному полюсу через Лондон (долгота 0°) в качестве одной боковой стороны, и меридианом, проходящим от экватора к Северному полюсу через Новый Орлеан (долгота 90°), в качестве второй боковой стороны. Если вы посмотрите на этот треугольник, вы увидите, что все три его угла прямые, что, конечно, невозможно в плоском мире Евклида.
Гаусс и другие математики разработали различные типы геометрий, которые описывали поверхность сферы и других криволинейных поверхностей. Риман пошел дальше: он нашел способ описания поверхности независимо от того, как изменяется ее геометрия, – даже если при переходе из одной точки в другую поверхность превращалась из сферической в плоскую и потом в гиперболическую. А потом он пошел еще дальше и не ограничился исследованием кривизны двумерной поверхности, а, опираясь на работу Гаусса, нашел, как математически можно описать кривизну трехмерного и даже четырехмерного пространства.
Это сложная для понимания математическая концепция. Мы еще можем представить себе кривую линию или поверхность, но трудно представить искривленное трехмерное пространство и еще труднее – искривленное четырехмерное пространство. Но для математиков обобщение понятия кривизны на разные измерения является несложным делом – по крайней мере выполнимым. Оно выполняется с помощью введения метрики, которая определяет способ расчета расстояния между двумя точками в пространстве.
Читать дальше
Конец ознакомительного отрывка
Купить книгу