Для определения часто встречающихся состояний нам нужно наметить множество всех возможных состояний. Один из способов заключается в том, чтобы посмотреть, как эти состояния связаны. Мы можем сказать, что два состояния связны между собой, если я могу перейти от одного к другому с помощью простого преобразования. Для простоты давайте рассмотрим все преобразования, при которых каждый зритель может пересесть на соседнее место, при условии, что новое состояние удовлетворяет ограничению, касающемуся среднего ряда. К числу этих преобразований относятся те, при которых каждый зритель пересаживается на одно место справа, а также преобразования, при которых человек на нижней половине стадиона пересаживается на одно место вверх, а человек на верхней половине стадиона пересаживается на одно место вниз.
В принципе мы можем использовать эти преобразования, чтобы прийти к любому состоянию. Однако на практике достижение какого-либо состояния не является таким уж простым делом. Если мы позволим людям на стадионе пересаживаться на соседние места, выбранные случайным образом (разумеется, допуская только те преобразования, которые удовлетворяют ограничению, касающемуся среднего ряда), мы никогда не получим комбинации, которые образуют слова или изображения. Эти состояния очень редки и труднодостижимы. Данное упражнение позволяет проиллюстрировать определение информации, подразумевающее наличие порядка. В физической системе информация представляет собой понятие, обратное энтропии, поскольку оно предполагает редкие и сильно коррелирующие конфигурации, которые трудно получить.
Необычные конфигурации атомов, как в автомобиле Bugatti или гитаре, несут больше информации, чем более распространенные конфигурации тех же атомов, хотя технически (и Шеннон в этом прав) передача сообщения об упорядоченной конфигурации и передача сообщения о неупорядоченной конфигурации требует одинакового количества битов, если мы проигнорируем корреляции, превалирующие в упорядоченном состоянии (которые мы можем использовать для сжатия последовательности, что позволит сократить количество битов, требующихся для передачи сообщения об упорядоченном состоянии). Тем не менее, несмотря на разницу в интерпретации, которая мешает примирить идеи Шеннона и Больцмана, мы по-прежнему можем сделать вывод о том, что из информации состоят не только сообщения, но и большинство вещей.
Итак, давайте вернемся к автомобилю Bugatti. Случай с Bugatti не так прост, как случай с твитом, поскольку он подразумевает позиционирование огромного числа атомов, а не просто 140 символов. Кроме того, как я только что сказал, в случае с Bugatti мы ищем не любую возможную конфигурацию атомов, а конфигурацию, соответствующую чему-то вроде автомобиля Bugatti (как и в примере с редкой комбинацией занятых на стадионе мест). Например, перестановка шин Bugatti приводит к изменению расположения атомов, но ни одно из основных интересующих нас свойств при этом не изменяется, поэтому мы будем рассматривать все автомобили Bugatti с перестановленными шинами одинаковыми. Тем не менее группа автомобилей, находящихся в идеальном состоянии, относительно мала, а это означает, что в совокупности всех возможных комбинаций атомов (как и перемещающихся по стадиону людей) лишь некоторые представляют собой Bugatti в идеальном состоянии. С другой стороны, группа разбитых Bugatti включает гораздо большее количество состояний (более высокое значение энтропии) и, следовательно, несет меньше информации (хотя для передачи сообщения о каждом из этих состояний требуется большее количество битов). Однако, к самой большой группе, которая включает случайные комбинации сидящих на стадионе зрителей, относятся автомобили Bugatti в их «естественном» состоянии. Это состояние, в котором железо представляет собой руду, а алюминий входит в состав боксита. Таким образом, разрушение автомобиля Bugatti приводит к уничтожению информации. С другой стороны, создание Bugatti – это процесс воплощения информации.
Пример со стадионом позволяет нам понять, что конфигурации материи, воплощающие информацию, например автомобиль Bugatti, являются редкими и труднодостижимыми. Пример со стадионом также подчеркивает динамическое происхождение порядка, поскольку для любой формы порядка атомы должны располагаться в определенном месте. Проблема состоит в том, что системы не могут свободно переходить из одного состояния в любое другое. Как показывает пример со стадионом, существующее состояние системы ограничивает число возможных вариантов ее преобразования, а для перехода системы от беспорядочного состояния к упорядоченному необходимо совершить множество последовательных шагов. К сожалению, количество путей, ведущих систему от беспорядка к порядку, гораздо меньше, чем количество путей, ведущих от порядка к беспорядку. В системе, эволюция которой является случайной (как в системе статистической физики), совершить серию последовательных шагов нелегко.
Читать дальше
Конец ознакомительного отрывка
Купить книгу