Формально гипотеза рациональных ожиданий утверждает, что ожидаемая величина любой переменной (например, цена акции или темп инфляции) равна величине, предсказанной с помощью прогнозных моделей с поправкой на случайную погрешность. Но за этой погрешностью зачастую аналитики скрывают свою некомпетентность.
В результате исследований проектов железнодорожного строительства за 30 лет выяснилось, что более чем в 90% случаев прогноз пассажиропотока завышался в среднем в два раза. А стоимость проекта превосходила плановую почти на 50%. При этом свидетельств нереалистичного планирования было множество, но менеджеры предпочитали их игнорировать. Этим обстоятельством часто пользуются компании-поставщики B2B (бизнес для бизнеса). Сперва занижают стоимость, чтобы выиграть тендер, а после дополнительными соглашения добивают заказчика по тем моментам, которые тот выпустил из виду при оптимистичном планировании.
За всеми вышеперечисленными расчетами стоят два предположения. Первое состоит в том, что рациональные индивиды, формируя свои ожидания, используют всю доступную им информацию. Под этим понимается, что они ведут себя в соответствии с моделями, прогнозирующими их будущие действия. И возможность непредсказуемых потрясений означает, что их поведение будет соответствовать расчетной модели лишь в среднем. Люди всегда будут допускать ошибки, но если они совершаются независимо от информации, доступной всем, и к тому же не зависят одна от другой, то нет причин думать, что эти ошибки приведут к смещению общего тренда в ту или иную сторону. Единственный возможный источник односторонней интерпретации фактов лежит в самой модели.
Второе предположение гласит, что Вселенная стабильна (линейна) во времени. Взятые вместе, оба предположения задают уровень информированности и предсказуемости, достаточный, чтобы ваши математические ожидания оказались в среднем верными. Для изменения ожиданий никаких оснований нет. Если вы думаете, что в дальнейшем ваши ожидания изменятся, значит, вы их уже изменили и поэтому в будущем их не измените. Например, текущая цена акций зависит от сегодняшних ожиданий относительно того, какой эта цена будет в будущем.
Прогнозировать можно практически всё. Продажи, денежные потоки, результат встречи, выбор потребителя, температуру воздуха, осадки. Хорошим прогноз считается если он сбывается с хорошей приемлемой точность. Под точностью прогнозы в компаниях представляют зачастую не в виде конкретной цифры, а в определённом диапазоне, то есть с погрешностью. И приемлемой точностью считается если прогноз попал в этот диапазон.
В компаниях, чтобы уменьшить ошибку при прогнозировании делают прогноз по среднему. Такой метод использует плановый отдел, когда вообще не знает о влияющих факторах. К примеру, как заложить сумму незапланированных расходов на будущий год? Для этого берут предыдущие периоды и выводят среднее значение, которое и закладывают на будущие незапланированные расходы.
Когда у аналитиков компании нет каких-либо показателей по рынку, то существует два варианта их получить – либо заказать дорогостоящие исследования, либо использовать так называемый метод Ферми. Этот метод служит для приблизительных расчётов «чего угодно» при минимальных начальных знаниях. Поэтому практически всегда прогнозисты используют именно его.
Суть метода Ферми состоит в том, чтобы за очень короткое время провести быстрые приблизительные расчёты, не имея при этом никаких точных данных. Существует история о том, как Ферми рассказывал своим студентам об определении числа настройщиков пианино в Чикаго. Как можно определить количество данных настройщиков? Студенты начинали с того, что у них не было никаких данных для расчета количества настройщиков пианино в Чикаго. Конечно, можно было просто пересчитать всех настройщиков, прочитав объявления или узнать в каком-нибудь агентстве, выдающем лицензии на такие услуги. Но Ферми предложил своим студентам решать задачи тогда, когда проверить результат будет не так просто. Его целью было продемонстрировать, что они всё-таки знают что-то об искомой величине.
Для начала он просил определить другие значения, имеющие отношение к пианино и настройщикам показатели – тоже неизвестные, но более простые для оценки. Это были численность населения Чикаго (в 1930-1950-х годах составляла более 3 млн. человек), среднее число человек в одной семье (два или три), процент семей, регулярно пользующихся услугами настройщиков пианино (максимально каждая десятая, минимально каждая тридцатая семья), требуемая частота настройки (в среднем, вероятно, не менее раза в год), число пианино, настраиваемых настройщиком в день (четыре или пять инструментов с учетом затрат времени на дорогу), а также число рабочих дней настройщика в году (скажем, 250).
Читать дальше