Описательные статистики часто служат для сравнения двух значений или величин. Я на один дюйм выше своего брата; сегодня температура воздуха на девять градусов больше «исторического среднего» для этой даты и т. д. Такие сравнения имеют смысл, поскольку большинство из нас признают используемые в этих случаях шк а лы единиц измерения. Один дюйм – не так много, когда речь идет о человеческом росте, поэтому вы можете заключить, что у нас с братом примерно одинаковый рост. И напротив, девять градусов – значительное отклонение температуры воздуха практически для любого климата в любое время года; поэтому, если в какой-то из дней было зафиксировано превышение средней температуры на девять градусов, это существенная аномалия. Но допустим, я сообщу, что хлопья Granola Cereal A содержат на 31 миллиграмм больше натрия, чем хлопья Granola Cereal B. Если вы не знакомились со специальной литературой, в которой рассматриваются последствия употребления в пищу натрия, и не знаете, о какой величине порции хлопьев идет в данном случае речь, на основе приведенной выше информации вы не сделаете полезных выводов. А если я скажу вам, что мой кузен Эл заработал в текущем году на 53 000 долларов меньше, чем в прошлом? Следует ли нам тревожиться за судьбу Эла? А что если он управляющий хедж-фонда, для которого сумма 53 000 долларов соизмерима с ошибкой округления при подсчете его годового дохода?
В примерах с содержанием натрия в хлопьях и доходом Эла отсутствует контекст, который позволил бы оценить масштаб проблемы, если таковая имеется. Самый простой способ придать смысл этим сравнениям – использовать процентные величины. Если бы я сообщил вам, что хлопья Granola Cereal A содержат на 50 % больше натрия, чем хлопья Granola Cereal B, а доход моего кузена Эла сократился в прошлом году на 47 %, это позволило бы вам сделать определенные выводы. Оценка тех или иных изменений в процентах предоставляет нам нечто наподобие шкалы.
Поскольку в школе вас наверняка научили вычислять проценты, не исключено, что у вас возникнет соблазн не читать несколько следующих абзацев. Что ж, возможно, вы правы. Однако прежде чем принять окончательное решение, выполните одно простое упражнение. Допустим, в универмаге продается платье за 100 долларов. Заместитель директора универмага решает снизить цену всех товаров на 25 %. Но впоследствии его увольняют за то, что он зависает в баре с Биллом Гейтсом [13], а новый заместитель директора распоряжается повысить все цены на 25 %. Какой окажется окончательная цена платья? Если вы скажете (или подумаете), что 100 долларов, то вам лучше все же читать текст подряд.
В действительности окончательная цена платья составит 93,75 доллара. Этот нехитрый трюк принесет вам порцию аплодисментов и восхищение присутствующих на какой-нибудь вечеринке. Процентные величины – полезнейшая вещь, но подчас они порождают в головах людей путаницу и даже способны ввести в заблуждение. Формула для вычисления разности (или изменения) процентов такова: (новая величина – исходная величина) / исходная величина. Числитель (верхняя часть дроби) дает нам величину изменения в абсолютных значениях; знаменатель (нижняя часть дроби) помещает это изменение в контекст путем его сравнения с нашей исходной точкой. Поначалу это кажется очевидным, как в случае, когда заместитель директора универмага снижает цену платья (100 долларов) на 25 %. Двадцать пять процентов от первоначальной цены (100 долларов) составляют 25 долларов; это скидка, в результате цена платья становится 75 долларов. Вы можете вставить соответствующие числа в указанную выше формулу и проделать простые вычисления, чтобы убедиться в правильности моих подсчетов: (100 долл. – 75 долл.) / 100 долл. = 0,25, или 25 %.
Платье продается за 75 долларов до тех пор, пока новый заместитель директора универмага не примет решение повысить цену на 25 %. Именно в этом месте многие совершают ошибку, поскольку 25-процентное повышение цены вычисляется как процент от новой, сниженной цены платья, которая равняется 75 долларов. Повышение цены составит 0,25 × 75 долл. = 18,75 долл.; вот так и получается окончательная цена платья – 75 долл. + 18,75 долл. = 93,75 долл. (а не 100 долларов). Дело в том, что любое процентное изменение всегда дает значение какого-то числа относительно чего-либо еще . Следовательно, нам нужно лучше понять, что же представляет собой это «что-то еще».
Однажды я инвестировал деньги в компанию, основанную моим приятелем, с которым мы проживали в одной комнате студенческого общежития во время учебы в колледже. Поскольку это был частный бизнес, от его владельца не требовалось предоставлять акционерам строго определенный перечень сведений о его деятельности. В течение нескольких лет мне ничего не было известно о судьбе моей инвестиции – бывший приятель предпочитал не распространяться на сей счет. Наконец я получил по почте письмо, в котором говорилось, что прибыль компании выросла на 46 % по сравнению с предыдущим годом. Какой была эта прибыль в абсолютных показателях, в письме не сообщалось, стало быть, я по-прежнему не имел ни малейшего представления об эффективности своих инвестиций. Допустим, в прошлом году эта фирма заработала 27 центов (то есть практически ничего), а в текущем – 39 центов (то есть опять-таки почти ничего). Тем не менее прибыль компании выросла с 27 центов до 39 центов, то есть на 47 %! Очевидно, что рассылка такого письма акционерам – если бы в нем указывалось, что прибыль, накопленная фирмой за два года, меньше стоимости чашки кофе в сети Starbucks, – принесла бы им не радость, а жестокое разочарование.
Читать дальше
Конец ознакомительного отрывка
Купить книгу