Хакеры сновидений - Архив 1-6

Здесь есть возможность читать онлайн «Хакеры сновидений - Архив 1-6» весь текст электронной книги совершенно бесплатно (целиком полную версию без сокращений). В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: Прочее, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Хакеры сновидений: Архив 1-6: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Хакеры сновидений: Архив 1-6»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

     Давным-давно, один парнишка по имени Kor, начал собирать и редактировать материалы по различным изысканиям хакеров сновидений. Потом он куда-то пропал, но нашлись другие, кто подхватил эстафету начатую им. Все это вылилось в данный архив, который продолжает пополнятся каждый день.

Хакеры сновидений: Архив 1-6 — читать онлайн бесплатно полную книгу (весь текст) целиком

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Хакеры сновидений: Архив 1-6», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

В основном фракталы делят на геометрические, алгебраические и стохастические. Однако существуют и другие классификации:

Рукотворные и природные. К рукотворным относятся те фракталы, которые были придуманы учёными, они при любом масштабе обладают фрактальными свойствами. На природные фракталы накладывается ограничение на область существования — то есть максимальный и минимальный размер, при которых у объекта наблюдаются фрактальные свойства.

Детерминированные (алгебраические и геометрические) и недетерминированные

(стохастические).

Геометрические фракталы

История фракталов началась с геометрических фракталов, которые исследовались математиками в XIX веке. Фракталы этого класса — самые наглядные, потому что в них сразу видна самоподобность.

В двухмерном случае такие фракталы можно получить, задав некоторую ломаную, называемую генератором. За один шаг алгоритма каждый из отрезков, составляющих ломаную, заменяется на ломаную-генератор, в соответствующем масштабе. В результате бесконечного повторения этой процедуры (а точнее, при переходе к пределу) получается фрактальная кривая. При видимой сложности полученной кривой, её общий вид задается только формой генератора.

Пример кривая Коха

Запредельное видение - часть 2

UGor

Цитата: Soledat: Короче говоря, бесконечно малое в бесконечно большом. (Инфу и рисунки нашла в гугле) Если взять дерево, то его ствол не бесконечно большой. Ствол является основой фрактала - его корнем. Но и ветки не могут ветвиться бесконечно долго. Есть предел толщины веточек. Капилляры не могут быть тоньше молекул воды.

И в геометрии не могут быть бесконечными порталы. Конечность сопряжена с разрешением экрана, толщиной грифеля карандаша.

Но в математике, в ее расчетных данных, судя по всему порталы могут быть до бесконечности малыми. Но в математике нет точного определения портала! Парадокс!

В математике есть понятие пространства. Какое дерево будет иметь больше различимых веточек, при равной их толщине - то, которое мы нарисовали на плоском листе бумаги в натуральную величину или то, которое растет в саду? В математике размерности могут превышать размерность 3-х измерений геометрии. Поэтому мысль возникла. Где зарыта бесконечность математических фракталов? Не в бесконечности измерений ли?

Soledat

Возьмем к примеру длину береговой линии, измеренную различными отрезками (differentlengthrulers). Чем короче отрезок, тем длиннее береговая линия, парадокс, известный как парадокс береговой линии. Ссори за тавтологию.

Soledat

Я уже всех достала??

Сейчас вот последнее еще выложу и уймусь.А то работа стоит ))

Это понятие тесно связано с тем, что мы разбираем сейчас. Ну, во всяком случае мне так кажется. Я правда не до конца понимаю это понятие "В програмировании" но, что бы не получился испорченный телефон выложу все. Цитировать

Материал из Википедии — свободной энциклопедии

Реку?рсия — метод определения класса объектов или методов предварительным заданием одного или нескольких (обычно простых) его базовых случаев или методов, а затем заданием на их основе правила построения определяемого класса, ссылающегося прямо или косвенно на эти базовые случаи.

Другими словами, рекурсия — способ общего определения объекта или действия через себя, с использованием ранее заданных частных определений. Рекурсия используется, когда можно выделить самоподобие задачи. Цитировать

Рекурсия в программировании

Функции

В программировании рекурсия — вызов функции (процедуры) из неё же самой,

непосредственно (простая рекурсия) или через другие функции (сложная рекурсия), например, функция A вызывает функцию B, а функция B — функцию A. Количество вложенных вызовов функции или процедуры называется глубиной рекурсии.

Мощь рекурсивного определения объекта в том, что такое конечное определение способно описывать бесконечно большое число объектов. С помощью рекурсивной программы же возможно описать бесконечное вычисление, причём без явных повторений частей программы.

Реализация рекурсивных вызовов функций в практически применяемых языках и средах программирования, как правило, опирается на механизм стека вызовов — адрес возврата и локальные переменные функции записываются в стек, благодаря чему каждый следующий рекурсивный вызов этой функции пользуется своим набором локальных переменных и за этот счёт работает корректно. Оборотной стороной этого довольно простого по структуре механизма является то, что рекурсивные вызовы не бесплатны — на каждый рекурсивный вызов требуется некоторое количество оперативной памяти компьютера, и при чрезмерно большой глубине рекурсии может наступить переполнение стека вызовов. Вследствие этого обычно рекомендуется избегать рекурсивных программ, которые приводят (или в некоторых условиях могут приводить) к слишком большой глубине рекурсии.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Хакеры сновидений: Архив 1-6»

Представляем Вашему вниманию похожие книги на «Хакеры сновидений: Архив 1-6» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


libcat.ru: книга без обложки
Андрей Реутов
Отзывы о книге «Хакеры сновидений: Архив 1-6»

Обсуждение, отзывы о книге «Хакеры сновидений: Архив 1-6» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.