Барбара Оакли - Думай как математик - Как решать любые задачи быстрее и эффективнее

Здесь есть возможность читать онлайн «Барбара Оакли - Думай как математик - Как решать любые задачи быстрее и эффективнее» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Год выпуска: 2012, Жанр: Прочее, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Думай как математик: Как решать любые задачи быстрее и эффективнее: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Думай как математик: Как решать любые задачи быстрее и эффективнее»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Думай как математик: Как решать любые задачи быстрее и эффективнее — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Думай как математик: Как решать любые задачи быстрее и эффективнее», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

«Вообразите, что вы впервые сталкиваетесь с новым видом математических понятий — например, рекурсивным вычитанием (т.е. делением). Когда детям преподают это абстрактное понятие, чаще всего их заставляют выучить набор правил обращения с действиями и числами. а потом эти правила снова и снова отрабатываются с разными числами в надежде, что такая практика поможет детям “увидеть” параллели с определенными физическими проявлениями. Мы часто описываем это как обучение математическим действиям путем механического заучивания (что в моих терминах называется индексальным обучением), а затем, когда действия уже могут совершаться почти бессознательно, мы надеемся, что дети осознают, как математика соотносится с процессами физического мира. На определенном этапе, если все идет как нужно, дети “понимают” общий абстрактный принцип, объединяющий эти связанные с символами и формулами операции. Так они могут реорганизовать то, что уже заучили механически, в соответствии с мнемоническими принципами более высокого уровня, касающимися комбинаторных возможностей и их абстрактной соотнесенности с манипулированием объектами. Такой шаг к абстракции для многих детей зачастую сложен. Однако вспомните, что та же трансформация на еще более высоком уровне абстракции требуется для понимания высшей математики. Дифференциалы связаны с рекурсивным делением, интегралы — с рекурсивным умножением, в каждом случае до бесконечности, т.е. до предельных величин (это возможно потому, что они зависят от сходящихся рядов, которые сами по себе плод умозаключений, а не прямого наблюдения). Эта способность видеть, что будет, если операцию повторять бесчисленное количество раз, и является ключевой для того, чтобы разрешить парадокс Зенона (который, кажется, невозможно осмыслить, когда он описан словами). Однако вдобавок к этой сложности используемый сейчас нами лейбницевский формализм сводит эту бесконечную рекурсию к одному символу (dx/dt) или знаку интеграла, поскольку никто не в состоянии писать такие операции бесконечно. Из-за этого манипулирование математическими символами еще больше теряет связь с соответствующими физическими величинами.

Поэтому смысл операции, выраженный математически, по сути содержит двойную кодировку. Да, у нас развиты мыслительные способности, позволяющие манипулировать с физическими объектами, и, разумеется, это сложно. Однако математика есть форма «кодирования» , а не только воспроизведения, и декодирование является чрезвычайно трудным процессом именно из-за комбинаторных сложностей. Вот почему кодирование и шифрование осложняют восстановление и получение изначальной информации. По моему мнению, это является неотъемлемым свойством математики, независимо от развитых у нас способностей. Математика сложна по той же причине, по которой сложна расшифровка закодированного послания.

К моему удивлению, мы все знаем, что математические уравнения — это по сути зашифрованные послания, для расшифровки которых нужен ключ. Однако мы почему-то изумляемся, что высшая математика так сложна для преподавания, и часто виним систему образования или преподавателей. Мне кажется, что с тем же успехом можно обвинять всю эволюцию» (личная переписка с автором, 11 июля 2013 г.).

Bilalič et al. 2008.

Geary 2011. См. также документальный фильм «Частная вселенная» (A Private Universe) по адресу http://www.learner.org/resources/series28.html?pop=yes&pid=9, который обусловил дальнейшее изучение природы ошибочного понимания естественно-научных концепций.

Алан Шёнфилд (Alan Schoenfeld 1992) замечает, что более сотни имеющихся в его распоряжении видеороликов, на которых старшеклассники и студенты решают незнакомые задачи, свидетельствуют: примерно в 60% случаев решения основываются на подходе «прочти, быстро выбери способ и не отступайся от него ни под каким видом». Это характерный пример того, как работает сфокусированное мышление.

Голдакр, 2010.

Gerardi et al. 2013.

Различия между полушариями головного мозга могут быть важны, однако, как уже упоминалось, все утверждения в этой области нужно принимать с осторожностью. Лучше всего сказал об этом Норман Кук: «Многие идеи, высказанные в ходе дебатов 1970-х годов, ощутимо выходили за пределы фактических знаний: разницей между полушариями объяснялись сразу все загадки человеческой психологии, включая подсознание, природу творчества и парапсихологические феномены, — однако неизбежное отклонение маятника в обратную сторону было также чрезмерным» (Cook 2002: 9).

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Думай как математик: Как решать любые задачи быстрее и эффективнее»

Представляем Вашему вниманию похожие книги на «Думай как математик: Как решать любые задачи быстрее и эффективнее» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Барбара Оакли - Думай как математик
Барбара Оакли
Отзывы о книге «Думай как математик: Как решать любые задачи быстрее и эффективнее»

Обсуждение, отзывы о книге «Думай как математик: Как решать любые задачи быстрее и эффективнее» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x