Biobased Composites
Здесь есть возможность читать онлайн «Biobased Composites» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.
- Название:Biobased Composites
- Автор:
- Жанр:
- Год:неизвестен
- ISBN:нет данных
- Рейтинг книги:4 / 5. Голосов: 1
-
Избранное:Добавить в избранное
- Отзывы:
-
Ваша оценка:
- 80
- 1
- 2
- 3
- 4
- 5
Biobased Composites: краткое содержание, описание и аннотация
Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Biobased Composites»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.
Biobased Composites: Processing, Characterization, Properties, and Applications
Biobased Composites
Biobased Composites — читать онлайн ознакомительный отрывок
Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Biobased Composites», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.
Интервал:
Закладка:
30 30 Toldy, A., Szolnoki, B., and Marosi, G. (2011). Flame retardancy of fibre‐reinforced epoxy resin composites for aerospace applications. Polymer Degradation and Stability 96 (3): 371–376.
31 31 Li, J., Baker, B.A., Mou, X. et al. (2014). Biopolymer/calcium phosphate scaffolds for bone tissue engineering. Advanced Healthcare Materials 3 (4): 469–484.
32 32 Butcher, A.L., Offeddu, G.S., and Oyen, M.L. (2014). Nanofibrous hydrogel composites as mechanically robust tissue engineering scaffolds. Trends in Biotechnology 32 (11): 564–570.
33 33 Freeman, R., Boekhoven, J., Dickerson, M.B. et al. (2015). Biopolymers and supramolecular polymers as biomaterials for biomedical applications. MRS Bulletin 40 (12): 1089–1101.
34 34 Joung, Y.H. (2013). Development of implantable medical devices: from an engineering perspective. International Neurourology Journal 17 (3): 98–106. https://doi.org/10.5213/inj.2013.17.3.98.
35 35 Modjarrad, K. and Ebnesajjad, S. (2013). Handbook of Polymer Applications in Medicine and Medical Devices. Elsevier.
36 36 AL‐Oqla, F.M. and Sapuan, S.M. (2014). Date palm fibers and natural composites. Postgraduate Symposium on Composites Science and Technology 2014 & 4th Postgraduate Seminar on Natural Fibre Composites 2014. Putrajaya (28 January 2014).
37 37 AL‐Oqla, F.M. and Sapuan, S.M. (2014). Enhancement selecting proper natural fiber composites for industrial applications. Postgraduate Symposium on Composites Science and Technology 2014 & 4th Postgraduate Seminar on Natural Fibre Composites 2014. Putrajaya (28 January 2014).
38 38 Khairul, M., Faris, S., AL‐Oqla, F.M., and Zainudin, E. (2019). Experimental investigation and numerical prediction for the fatigue life durability of austenitic stainless steel at room temperature. Engineering Solid Mechanics 7 (2): 121–130.
39 39 Rashid, B., Leman, Z., Jawaid, M. et al. (2017). Eco‐friendly composites for brake pads from agro waste: a review. In: Reference Module in Materials Science and Materials Engineering. Elsevier.
40 40 Sadrmanesh, V., Chen, Y., Rahman, M., and Al‐Oqla, F.M. (2019). Developing a decision making model to identify the most influential parameters affecting mechanical extraction of bast fibers. Journal of Cleaner Production 238: 117891.
41 41 Sapuan, S.M., Pua, F.‐L., El‐Shekeil, Y.A., and AL‐Oqla, F.M. (2013). Mechanical properties of soil buried kenaf fibre reinforced thermoplastic polyurethane composites. Materials & Design 50: 467–470. https://doi.org/10.1016/j.matdes.2013.03.013.
42 42 Peças, P., Carvalho, H., Salman, H., and Leite, M. (2018). Natural fibre composites and their applications: a review. Journal of Composites Science 2 (4): 66.
43 43 Yousef, S., Mumladze, T., Tatariants, M. et al. (2018). Cleaner and profitable industrial technology for full recovery of metallic and non‐metallic fraction of waste pharmaceutical blisters using switchable hydrophilicity solvents. Journal of Cleaner Production 197: 379–392.
44 44 Alaaeddin, M., Sapuan, S., Zuhri, M. et al. (2019). Development of photovoltaic module with fabricated and evaluated novel backsheet‐based biocomposite materials. Materials 12 (18): 3007.
45 45 Majeed, K., Jawaid, M., Hassan, A. et al. (2013). Potential materials for food packaging from nanoclay/natural fibres filled hybrid composites. Materials & Design 46: 391–410.
46 46 Sanyang, M., Ilyas, R., Sapuan, S., and Jumaidin, R. (2018). Sugar palm starch‐based composites for packaging applications. In: Bionanocomposites for Packaging Applications, 125–147. Springer.
47 47 AL‐Oqla, F.M., Omari, M.A., and Al‐Ghraibah, A. (2017). Predicting the potential of biomass‐based composites for sustainable automotive industry using a decision‐making model. In: Lignocellulosic Fibre and Biomass‐Based Composite Materials, 27–43. Elsevier.
48 48 AL‐Oqla, F.M. and Rababah, M. (2017). Challenges in design of nanocellulose and its composites for different applications. In: Cellulose‐Reinforced Nanofibre Composites, 113–127. Elsevier.
49 49 Alaaeddin, M., Sapuan, S., Zuhri, M. et al. (2019). Polymer matrix materials selection for short sugar palm composites using integrated multi criteria evaluation method. Composites Part B: Engineering 176: 107342.
50 50 Abdulrahman, K.O., Abed, A.M., Bayode, A. et al. (2018). Hierarchical Composite Materials: Materials, Manufacturing, Engineering, vol. 8. Walter de Gruyter GmbH & Co KG.
51 51 Alaaeddin, M., Sapuan, S., Zuhri, M. et al. (2019). Photovoltaic applications: status and manufacturing prospects. Renewable and Sustainable Energy Reviews 102: 318–332.
52 52 Alaaeddin, M., Sapuan, S., Zuhri, M. et al. (2019). Physical and mechanical properties of polyvinylidene fluoride – short sugar palm fiber nanocomposites. Journal of Cleaner Production 235: 473–482.
53 53 Faris Mohammed Khair Faris AL‐Oqla (2015). Enhancement of Evaluation Methodologies for Natural Fiber Composites Material Selection System (Ph.D). UPM.
54 54 Al‐Widyan, M.I. and Al‐Oqla, F.M. (2011). Utilization of supplementary energy sources for cooling in hot arid regions via decision‐making model. International Journal of Engineering Research and Applications 1 (4): 1610–1622.
55 55 Al‐Widyan, M.I. and Al‐Oqla, F.M. (2014). Selecting the most appropriate corrective actions for energy saving in existing buildings A/C in hot arid regions. Building Simulation 7 (5): 537–545. https://doi.org/10.1007/s12273‐013‐0170‐3.
56 56 Dalalah, D., Al‐Oqla, F., and Hayajneh, M. (2010). Application of the Analytic Hierarchy Process (AHP) in multi‐criteria analysis of the selection of cranes. Jordan Journal of Mechanical and Industrial Engineering, JJMIE 4 (5): 567–578.
57 57 Dweiri, F. and Al‐Oqla, F.M. (2006). Material selection using analytical hierarchy process. International Journal of Computer Applications in Technology 26 (4): 182–189. https://doi.org/10.1504/IJCAT.2006.010763.
58 58 Alves, C., Ferrão, P., Silva, A. et al. (2010). Ecodesign of automotive components making use of natural jute fiber composites. Journal of Cleaner Production 18 (4): 313–327. https://doi.org/10.1016/j.jclepro.2009.10.022.
59 59 Shah, D.U. (2016). Damage in biocomposites: stiffness evolution of aligned plant fibre composites during monotonic and cyclic fatigue loading. Composites Part A: Applied Science and Manufacturing 83: 160–168.
60 60 Arena, M., Azzone, G., and Conte, A. (2012). A streamlined LCA framework to support early decision making in vehicle development. Journal of Cleaner Production 41: 105–113.
61 61 Black, M., Whittaker, C., Hosseini, S. et al. (2011). Life cycle assessment and sustainability methodologies for assessing industrial crops, processes and end products. Industrial Crops and Products 34 (2): 1332–1339.
62 62 Luz, S.M., Caldeira‐Pires, A., and Ferrao, P. (2010). Environmental benefits of substituting talc by sugarcane bagasse fibers as reinforcement in polypropylene composites: ecodesign and LCA as strategy for automotive components. Resources, Conservation and Recycling 54 (12): 1135–1144.
63 63 Milani, A., Eskicioglu, C., Robles, K. et al. (2011). Multiple criteria decision making with life cycle assessment for material selection of composites. eXPRESS Polymer Letters 5 (12): 1062–1074. https://doi.org/10.3144/expresspolymlett.2011.104.
64 64 Pegoretti, D.S., Mathieux, F., Evrard, D. et al. (2014). Use of recycled natural fibres in industrial products: a comparative LCA case study on acoustic components in the Brazilian automotive sector. Resources, Conservation and Recycling 84: 1–14.
2 Processing Methods for Manufacture of Biobased Composites
P. Shenbaga Velu1, N. J. Vignesh2, and N. Rajesh Jesudoss Hynes2
Читать дальшеИнтервал:
Закладка:
Похожие книги на «Biobased Composites»
Представляем Вашему вниманию похожие книги на «Biobased Composites» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.
Обсуждение, отзывы о книге «Biobased Composites» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.