The Peripheral T-Cell Lymphomas

Здесь есть возможность читать онлайн «The Peripheral T-Cell Lymphomas» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

The Peripheral T-Cell Lymphomas: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «The Peripheral T-Cell Lymphomas»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

The first text dedicated to peripheral T-cell lymphomas and their classification, diagnosis, and management  Peripheral T-cell lymphomas (PTCL) are a diverse group of lymphoid malignancies that develop from mature T cells and natural killer (NK) cells. PTCL represents 10-15% of all cases of non-Hodgkin lymphoma in the US, and up to 20-25% of cases in South America, Asia, and other regions around the world. The role of different etiologic factors and the variation of geographic distribution makes PTCL one of the most difficult types of cancer to understand and treat. 
The first book of its kind, 
 presents a far-reaching survey of this complex and rare group of blood cancers. Featuring contributions from thought-leaders concerned with all aspects of PTCL, this authoritative text covers biology, epidemiology, classification, approved and emerging drugs, molecular genetics, and more. Detailed clinical chapters address diagnosis, prognosis, and treatment of each of the major PTCL subtypes identified in the 2018 WHO Classification of Tumors of Hematopoietic and Lymphoid Tissues. This much-needed resource: 
Covers the biological basis, epidemiology, classification, and treatment of PTCL Discusses the future of the field, including global collaboration efforts and novel approaches to PCTL Explores the role of biologics in PTCL and autologous and allogeneic stem-cell transplantation Offers new insights on molecular pathogenesis, innovative therapeutics, and novel drug combinations Features contributions from the Chairs The T-Cell Lymphoma Forum: the world’s largest meeting focused on PTCL Reflecting the unique epidemiology and genetic diversity of the PTCL, 
 is an indispensable source of data, insight, and references for the medical community, particularly those working in oncology and hematology.

The Peripheral T-Cell Lymphomas — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «The Peripheral T-Cell Lymphomas», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

9 9 Ji, M.M., Huang, Y.H., Huang, J.Y. et al. (2018). Histone modifier gene mutations in peripheral T‐cell lymphoma not otherwise specified. Haematologica 103 (4): 679–687.

10 10 Shah, U.A., Chung, E.Y., Giricz, O. et al. (2018). North American ATLL has a distinct mutational and transcriptional profile and responds to epigenetic therapies. Blood 132 (14): 1507–1518.

11 11 de Ruijter, A.J.M., van Gennip, A.H., and Caron, H.N. (2003). Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J 370 (Pt 3): 737–749.

12 12 Bolden, J.E., Peart, M.J., and Johnstone, R.W. (2006). Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov 5 (9): 769–784.

13 13 Wang, Z., Zang, C., Cui, K. et al. (2009). Genome‐wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes. Cell 138 (5): 1019–1031.

14 14 Dovey, O.M., Foster, C.T., and Cowley, S.M. (2010). Emphasizing the positive: a role for histone deacetylases in transcriptional activation. Cell Cycle 9 (14): 2700–2701.

15 15 Bertrand, P. (2010). Inside HDAC with HDAC inhibitors. Eur J Med Chem 45 (6): 2095–2116.

16 16 Hubbert, C., Guardiola, A., Shao, R. et al. (2002). HDAC6 is a microtubule‐associated deacetylase. Nature 417 (6887): 455–458.

17 17 Boyault, C., Sadoul, K., Pabion, M., and Khochbin, S. (2007). HDAC6, at the crossroads between cytoskeleton and cell signaling by acetylation and ubiquitination. Oncogene 26 (37): 5468–5476.

18 18 Vernin, C., Thenoz, M., Pinatel, C. et al. (2014). HTLV‐1 bZIP factor HBZ promotes cell proliferation and genetic instability by activating oncomiRs. Cancer Res 74 (21): 6082.

19 19 Mondello, P., Tadros, S., Teater, M. et al. (2020). Selective inhibition of HDAC3 targets synthetic vulnerabilities and activates immune surveillance in lymphoma. Cancer Discov 10 (3): 440–459.

20 20 Archer, S.Y., Meng, S., Shei, A., and Hodin, R.A. (1998). p21(WAF1) is required for butyrate‐mediated growth inhibition of human colon cancer cells. Proc Natl Acad Sci U S A 95 (12): 6791–6796.

21 21 Richon, V.M., Sandhoff, T.W., Rifkind, R.A., and Marks, P.A. (2000). Histone deacetylase inhibitor selectively induces p21WAF1 expression and gene‐associated histone acetylation. Proc Natl Acad Sci U S A 97 (18): 10014–10019.

22 22 Sasakawa, Y., Naoe, Y., Noto, T. et al. (2003). Antitumor efficacy of FK228, a novel histone deacetylase inhibitor, depends on the effect on expression of angiogenesis factors. Biochem Pharmacol 66 (6): 897–906.

23 23 Shao, Y., Gao, Z., Marks, P.A., and Jiang, X. (2004). Apoptotic and autophagic cell death induced by histone deacetylase inhibitors. Proc Natl Acad Sci U S A 101 (52): 18030–10835.

24 24 Carew, J.S., Nawrocki, S.T., Kahue, C.N. et al. (2007). Targeting autophagy augments the anticancer activity of the histone deacetylase inhibitor SAHA to overcome Bcr‐Abl‐mediated drug resistance. Blood 110 (1): 313–322.

25 25 Dunn, J., McCuaig, R., and Tu, W.J. (2015). Multi‐layered epigenetic mechanisms contribute to transcriptional memory in T lymphocytes. BMC Immunol 16: 27.

26 26 Antignano, F. and Zaph, C. (2015). Regulation of CD4 T‐cell differentiation and inflammation by repressive histone methylation. Immunol Cell Biol 93 (3): 245–252.

27 27 Toner, L.E., Vrhovac, R., Smith, E.A. et al. (2006). The schedule‐dependent effects of the novel antifolate pralatrexate and gemcitabine are superior to methotrexate and cytarabine in models of human non‐Hodgkin's lymphoma. Clin Cancer Res 12 (3): 924.

28 28 Paoluzzi, L., Scotto, L., Marchi, E. et al. (2010). Romidepsin and belinostat synergize the antineoplastic effect of bortezomib in mantle cell lymphoma. Clin Cancer Res 16 (2): 554.

29 29 Marchi, E., Paoluzzi, L., Scotto, L. et al. (2010). Pralatrexate is synergistic with the proteasome inhibitor Bortezomib in in vitro and in vivo models of T‐cell lymphoid malignancies. Clin Cancer Res 16 (14): 3648.

30 30 Kalac, M., Scotto, L., Marchi, E. et al. (2011). HDAC inhibitors and decitabine are highly synergistic and associated with unique gene‐expression and epigenetic profiles in models of DLBCL. Blood 118 (20): 5506–5516.

31 31 Jain, S., Jirau‐Serrano, X., Zullo, K.M. et al. (2015). Preclinical pharmacologic evaluation of pralatrexate and romidepsin confirms potent synergy of the combination in a murine model of human T‐cell lymphoma. Clin Cancer Res 21 (9): 2096.

32 32 Marchi, E., Zullo, K.M., Amengual, J.E. et al. (2015). The combination of hypomethylating agents and histone deacetylase inhibitors produce marked synergy in preclinical models of T‐cell lymphoma. Br J Haematol 171 (2): 215–226.

33 33 Zullo, K.M., Guo, Y., Cooke, L. et al. (2015). Aurora a kinase inhibition selectively synergizes with histone deacetylase inhibitor through cytokinesis failure in T‐cell lymphoma. Clin Cancer Res 21 (18): 4097–4109.

34 34 Odejide, O., Weigert, O., Lane, A.A. et al. (2014). A targeted mutational landscape of angioimmunoblastic T‐cell lymphoma. Blood 123 (9): 1293–1296.

35 35 Sakata‐Yanagimoto, M., Enami, T., Yoshida, K. et al. (2014). Somatic RHOA mutation in angioimmunoblastic T cell lymphoma. Nat Genet 46 (2): 171–175.

36 36 Couronné, L., Bastard, C., and Bernard, O.A. (2012). TET2 and DNMT3A mutations in human T‐cell lymphoma. N Engl J Med 366 (1): 95–96.

37 37 He, Y.F., Li, B.Z., Li, Z. et al. (2011). Tet‐mediated formation of 5‐carboxylcytosine and its excision by TDG in mammalian DNA. Science 333 (6047): 1303–1307.

38 38 Ito, S., Shen, L., Dai, Q. et al. (2011). Tet proteins can convert 5‐methylcytosine to 5‐formylcytosine and 5‐carboxylcytosine. Science 333 (6047): 1300–1303.

39 39 Tahiliani, M., Koh, K.P., Shen, Y. et al. (2009). Conversion of 5‐methylcytosine to 5‐hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324 (5929): 930.

40 40 Quivoron, C., Couronné, L., Della Valle, V. et al. (2011). TET2 inactivation results in pleiotropic hematopoietic abnormalities in mouse and is a recurrent event during human lymphomagenesis. Cancer Cell 20 (1): 25–38.

41 41 Muto, H., Sakata‐Yanagimoto, M., Nagae, G. et al. (2014). Reduced TET2 function leads to T‐cell lymphoma with follicular helper T‐cell‐like features in mice. Blood Cancer J 4 (12): e264‐e.

42 42 Lemonnier, F., Couronné, L., Parrens, M. et al. (2012). Recurrent TET2 mutations in peripheral T‐cell lymphomas correlate with TFH‐like features and adverse clinical parameters. Blood 120: 1466–1469.

43 43 Nagata, Y., Kontani, K., Enami, T. et al. (2016). Variegated RHOA mutations in adult T‐cell leukemia/lymphoma. Blood 127 (5): 596–604.

44 44 Gu, T., Lin, X., Cullen, S.M. et al. (2018). DNMT3A and TET1 cooperate to regulate promoter epigenetic landscapes in mouse embryonic stem cells. Genome Biol 19 (1): 88.

45 45 Cairns, R.A., Iqbal, J., Lemonnier, F. et al. (2012). IDH2 mutations are frequent in angioimmunoblastic T‐cell lymphoma. Blood 119 (8): 1901–1903.

46 46 Dawlaty, M.M., Breiling, A., Le, T. et al. (2014). Loss of Tet enzymes compromises proper differentiation of embryonic stem cells. Dev Cell 29 (1): 102–111.

47 47 Williams, K., Christensen, J., Pedersen, M.T. et al. (2011). TET1 and hydroxymethylcytosine in transcription and DNA methylation fidelity. Nature 473 (7347): 343–348.

48 48 Wu, H., D’Alessio, A.C., Ito, S. et al. (2011). Dual functions of Tet1 in transcriptional regulation in mouse embryonic stem cells. Nature 473 (7347): 389–393.

49 49 Lemonnier, F., Poullot, E., Dupuy, A. et al. (2018). Loss of 5‐hydroxymethylcytosine is a frequent event in peripheral T‐cell lymphomas. Haematologica 103 (3): e115.

50 50 Wang, C., McKeithan, T.W., Gong, Q. et al. (2015). IDH2R172 mutations define a unique subgroup of patients with angioimmunoblastic T‐cell lymphoma. Blood 126 (15): 1741–1752.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «The Peripheral T-Cell Lymphomas»

Представляем Вашему вниманию похожие книги на «The Peripheral T-Cell Lymphomas» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «The Peripheral T-Cell Lymphomas»

Обсуждение, отзывы о книге «The Peripheral T-Cell Lymphomas» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x