Biomedical Data Mining for Information Retrieval

Здесь есть возможность читать онлайн «Biomedical Data Mining for Information Retrieval» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Biomedical Data Mining for Information Retrieval: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Biomedical Data Mining for Information Retrieval»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

This book comprehensively covers the topic of mining biomedical text, images and visual features towards information retrieval. Biomedical and Health Informatics is an emerging field of research at the intersection of information science, computer science, and health care and brings tremendous opportunities and challenges due to easily available and abundant biomedical data for further analysis. The aim of healthcare informatics is to ensure the high-quality, efficient healthcare, better treatment and quality of life by analyzing biomedical and healthcare data including patient's data, electronic health records (EHRs) and lifestyle. Previously it was a common requirement to have a domain expert to develop a model for biomedical or healthcare; however, recent advancements in representation learning algorithms allows us to automatically to develop the model. Biomedical Image Mining, a novel research area, due to its large amount of biomedical images increasingly generates and stores digitally. These images are mainly in the form of computed tomography (CT), X-ray, nuclear medicine imaging (PET, SPECT), magnetic resonance imaging (MRI) and ultrasound. Patients' biomedical images can be digitized using data mining techniques and may help in answering several important and critical questions related to health care. Image mining in medicine can help to uncover new relationships between data and reveal new useful information that can be helpful for doctors in treating their patients.

Biomedical Data Mining for Information Retrieval — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Biomedical Data Mining for Information Retrieval», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

12 Chapter 12Figure 12.1 TNM system of staging.Figure 12.2 Factors affecting cancer prognosis.Figure 12.3 Levels of medical imaging.Figure 12.4 General steps of image processing.Figure 12.5 Artificial intelligence tools are used for detection, characterizati...

13 Chapter 13Figure 13.1 Data mining process.Figure 13.2 Generic model of classification.Figure 13.3 Filter approach.Figure 13.4 Wrapper approach.Figure 13.5 Snapshot of classifiers in WEKA.Figure 13.6 Classifiers performance.

List of Tables

1 Chapter 1 Table 1.1 Time series variables with description and physical units recorded in ... Table 1.2 Time series variables with physical units [30]. Table 1.3 Comparison of different models during testing.

2 Chapter 2 Table 2.1 Summary of database sources of protein structure classification.

3 Chapter 3 Table 3.1 Comparison of Research paper for diabetes dataset.Table 3.2 Comparison of Research papers on hepatitis dataset.Table 3.3 PIMA diabetes dataset description.Table 3.4 Description of Hepatitis dataset’s attributes.Table 3.5 Difference between filter method and wrapper method.Table 3.6 Accuracy obtained in Task 1 for diabetes dataset.Table 3.7 Accuracy obtained in Task 1 for hepatitis dataset.Table 3.8 Accuracy obtained in Task 2 in diabetes dataset.Table 3.9 Accuracy obtained in Task 2 in hepatitis dataset.Table 3.10 Accuracy obtained by filter feature selection methods in diabetes dat...Table 3.11 Accuracy obtained by wrapper feature selection methods in diabetes da...Table 3.12 Accuracy obtained by filter feature selection methods in hepatitis da...Table 3.13 Accuracy obtained in wrapper feature selection methods in the hepatit...Table 3.14 Accuracy obtained in Task 4 for diabetes dataset.Table 3.15 Accuracy obtained in Task 4 for hepatitis dataset.Table 3.16 Conclusion table for diabetes dataset.Table 3.17 Conclusion table for hepatitis dataset.

4 Chapter 4Table 4.1 Healthcare 4.0’s application scenarios.

5 Chapter 5Table 5.1 Comparative analysis between proposed algorithm and other existing met...Table 5.2 Comparative analysis between proposed algorithm and other existing met...

6 Chapter 6Table 6.1 Types of biomarkers explained based on their utilization.Table 6.2 List of the biomarkers using bioinformatics tools.Table 6.3 The types of microarray explained with illustrations.

7 Chapter 7Table 7.1 Reviewed IoT healthcare system.

8 Chapter 8Table 8.1 Detailed report of Mann–Whitney U test for ASM (angular second moment)...Table 8.2 Detailed report of Mann–Whitney U test for COR (correlation) at each c...Table 8.3 Detailed report of Mann–Whitney U test for ENT (entropy) at each conce...Table 8.4 Detailed report of Mann–Whitney U test for IDM (inverse difference mom...

9 Chapter 9Table 9.1 Classification results for diabetic and non-diabetic patients and corr...

10 Chapter 10Table 10.1 Several study researches review in context to data mining techniques ...Table 10.2 Several study researches review in context to data mining techniques ...Table 10.3 Several study researches review in context to data mining techniques ...Table 10.4 Several study researches review in context to data mining techniques ...

11 Chapter 11Table 11.1 Advancements in tools of medical imaging.Table 11.2 Some supplementary advancements in the subcellular and cellular secti...Table 11.3 Some miscellaneous advancements in the organ section and multidomain ...

12 Chapter 12Table 12.1 Comparison between different imaging techniques.

13 Chapter 13Table 13.1 WEKA names of selected classifiers.Table 13.2 Feature section algorithms.Table 13.3 Features in the dataset.Table 13.4 Classification accuracy in % with original features.Table 13.5 Classification accuracy in % after GA-based features selection.Table 13.6 Classification accuracy in % after PSO-based features selection.

Pages

1 v

2 ii

3 iii

4 iv

5 xv

6 xvi

7 xvii

8 xviii

9 xix

10 xx

11 1

12 2

13 3

14 4

15 5

16 6

17 7

18 8

19 9

20 10

21 11

22 12

23 13

24 14

25 15

26 16

27 17

28 18

29 19

30 21

31 22

32 23

33 24

34 25

35 26

36 27

37 28

38 29

39 30

40 31

41 32

42 33

43 34

44 35

45 36

46 37

47 38

48 39

49 40

50 41

51 42

52 43

53 44

54 45

55 46

56 47

57 48

58 49

59 50

60 51

61 53

62 54

63 55

64 56

65 57

66 58

67 59

68 60

69 61

70 62

71 63

72 64

73 65

74 66

75 67

76 68

77 69

78 70

79 71

80 72

81 73

82 74

83 75

84 76

85 77

86 78

87 79

88 80

89 81

90 82

91 83

92 84

93 85

94 86

95 87

96 88

97 89

98 90

99 91

100 92

101 93

102 94

103 95

104 96

105 97

106 98

107 99

108 100

109 101

110 103

111 104

112 105

113 106

114 107

115 108

116 109

117 110

118 111

119 112

120 113

121 114

122 115

123 116

124 117

125 118

126 119

127 120

128 121

129 122

130 123

131 124

132 125

133 126

134 127

135 128

136 129

137 131

138 132

139 133

140 134

141 135

142 136

143 137

144 138

145 139

146 140

147 141

148 142

149 143

150 144

151 145

152 146

153 147

154 148

155 149

156 150

157 151

158 152

159 153

160 154

161 155

162 156

163 157

164 158

165 159

166 160

167 161

168 163

169 164

170 165

171 166

172 167

173 168

174 169

175 170

176 171

177 172

178 173

179 174

180 175

181 176

182 177

183 178

184 179

185 180

186 181

187 182

188 183

189 184

190 185

191 186

192 187

193 188

194 189

195 190

196 191

197 192

198 193

199 194

200 195

201 197

202 198

203 199

204 200

205 201

206 202

207 203

208 204

209 205

210 206

211 207

212 208

213 209

214 210

215 211

216 212

217 213

218 214

219 215

220 216

221 217

222 218

223 219

224 220

225 221

226 222

227 223

228 224

229 225

230 226

231 227

232 228

233 229

234 230

235 231

236 232

237 233

238 234

239 235

240 237

241 238

242 239

243 240

244 241

245 242

246 243

247 244

248 245

249 246

250 247

251 248

252 249

253 250

254 251

255 252

256 253

257 254

258 255

259 256

260 257

261 258

262 259

263 260

264 261

265 263

266 264

267 265

268 266

269 267

270 268

271 269

272 270

273 271

274 272

275 273

276 274

277 275

278 276

279 277

280 278

281 279

282 280

283 281

284 282

285 283

286 284

287 285

288 286

289 287

290 288

291 289

292 290

293 291

294 293

295 294

296 295

297 296

298 297

299 298

300 299

301 300

302 301

303 302

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Biomedical Data Mining for Information Retrieval»

Представляем Вашему вниманию похожие книги на «Biomedical Data Mining for Information Retrieval» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Biomedical Data Mining for Information Retrieval»

Обсуждение, отзывы о книге «Biomedical Data Mining for Information Retrieval» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x