James Binney - Astrofísica

Здесь есть возможность читать онлайн «James Binney - Astrofísica» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на испанском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Astrofísica: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Astrofísica»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

La astrofísica es la física de las estrellas y, más ampliamente, la física del universo. Nos permite comprender la estructura y evolución de los sistemas planetarios, estrellas, galaxias y gas interestelar, y del cosmos como un todo.
En esta breve introducción, el destacado astrofísico James Binney explica cómo el campo de la astrofísica creció tan rápidamente en el siglo pasado, con enormes cantidades de datos recopilados por telescopios que explotan el espectro electromagnético, combinado con el rápido avance de la potencia informática, lo que ha permitido un modelado matemático cada vez más efectivo.

Astrofísica — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Astrofísica», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Astrofísica Una breve introducción se publicó originalmente en inglés en el - фото 1

Astrofísica. Una breve introducción se publicó originalmente en inglés en el año 2016. Esta traducción es publicada en acuerdo con Oxford University Press. Ediciones UC es responsable de la traducción de la obra original y Oxford University Press no es responsable por ningún error, omisión, imprecisión o ambigüedad en esta traducción o por cualquier daño causado por la dependencia al respecto.

EDICIONES UNIVERSIDAD CATÓLICA DE CHILE

Vicerrectoría de Comunicaciones

Av. Libertador Bernardo O’Higgins 390, Santiago, Chile

editorialedicionesuc@uc.cl

www.ediciones.uc.cl

ASTROFÍSICA

Una breve introducción

James Binney

© Inscripción Nº 2021-A-24

Derechos reservados

Diciembre 2020

ISBN 978-956-14-2484-5

ISBN digital 978-956-14-2485-2

Traducción: English UC Language Center

Ilustración de portada: Antonia Daiber

Diseño y diagramación: versión productora gráfica SpA

Diagramación digital: ebooks Patagonia

www.ebookspatagonia.com

info@ebookspatagonia.com

CIP – Pontificia Universidad Católica de Chile

Binney, James, 1950-, autor.

Astrofísica : una introducción muy breve / James Binney.

–Segunda edición.

Incluye bibliografía.

1. Astrofísica – Obras de divulgación.

I. t.

2020 523.01 + DDC23 RDA

Contenido Capítulo 1 Grandes ideas Capítulo 2 Gas entre las estrellas - фото 2

Contenido

Capítulo 1: Grandes ideas

Capítulo 2: Gas entre las estrellas

Capítulo 3: Estrellas

Capítulo 4: Acrecimiento

Capítulo 5: Sistemas planetarios

Capítulo 6: Astrofísica relativista

Capítulo 7: Galaxias

Capítulo 8: El todo

Lista de ilustraciones

Lecturas complementarias

CAPÍTULO 1

GRANDES IDEAS

Tanto en la tierra como en el cielo

Antes de que tuviéramos a Newton, existía la astronomía, pero no la astrofísica. Si el mito es cierto, la astrofísica nació cuando Newton vio caer una manzana en su huerto de Woolsthorpe y tuvo la impactante revelación de que la luna caía al igual que lo hacía la fruta. Es decir, un cuerpo celestial como la luna no flotaba en el cielo en un camino divinamente predeterminado, como suponían sus antecesores, sino que estaba sujeto a las mismas leyes de la física que rigen a una simple manzana, la que mañana no será más que un fruto a medio roer.

La relevancia de esta revelación es que nos permite aplicar las leyes de la física que descubrimos en nuestros laboratorios a la comprensión de objetos distantes en el universo. Es decir, el descubrimiento de Newton nos permite hacer un recorrido mental por la inimaginable vastedad del universo para ver un agujero negro en el centro de una galaxia lejana desde la que los radiotelescopios han recibido débiles señales.

Newton sentó las bases de la astrofísica con otro hecho crucial: demostró que es posible obtener deducciones cuantitativas precisas a partir de leyes de la física definidas adecuadamente. No solo entregó una explicación física coherente a las observaciones que había realizado, sino que predijo los resultados de observaciones futuras. Para este propósito, inventó nuevas matemáticas (cálculo infinitesimal) y utilizó su lenguaje para definir las leyes de la física. Desde la época de Newton, la mayoría de las leyes de la física se han expresado mediante ecuaciones diferenciales, las que especifican una función al establecer el ritmo al que cambia. La ecuación diferencial encapsula la universalidad de una situación física determinada, mientras que las condiciones iniciales que se requieren para recuperar la función encapsulan la particularidad de un evento específico. Por ejemplo, la trayectoria de un proyectil disparado de un arma es la solución de la ecuación de Newton m dv/dt = F, comúnmente abreviada como f = ma, la que está relacionada con el cambio de velocidad (v) (aceleración) de la fuerza (F) que está actuando. La ecuación de Newton se aplica a los proyectiles, manzanas e incluso a la Luna, pues es universal. Las trayectorias de la Luna, el proyectil y la manzana son distintas debido a las características de sus condiciones iniciales: la luna parte lejos del centro de la tierra y se mueve excepcionalmente rápido; el proyectil parte en la superficie de la tierra y se mueve más lentamente; la manzana también está cerca de la superficie de la tierra, pero inicialmente está inmóvil. Al aplicar una sola ecuación universal a estas tres condiciones iniciales diferentes se originan tres trayectorias totalmente distintas. De esta forma, las matemáticas que inventó Newton se convirtieron en la forma en que identificamos las similitudes y diferencias en eventos distintos.

Debe tener sentido

James Clerk Maxwell, el único hijo de un exitoso abogado de Edimburgo, mostró desde su juventud un gran talento para la matemática y la física, e hizo grandes contribuciones a la teoría de los gases y el calor y a la dinámica de los anillos de Saturno. Sin embargo, su mayor logro fue extender las leyes del electromagnetismo por medio del mero pensamiento. Imaginó una configuración experimental particular, en que una corriente alterna fluye en un circuito con un condensador (dispositivo con dos placas metálicas separadas por una capa aislante delgada, la que teóricamente podría ser una capa de vacío). La corriente fluye desde una placa, que adquiere carga positiva, hacia la otra, que adquiere la carga opuesta. Maxwell aplicó a este modelo las reglas previamente desarrolladas por André-Marie Ampere para calcular el campo magnético generado por un circuito y en 1865 demostró que entregaban resultados completamente distintos según cómo se aplicaran, a menos que fluyera una corriente entre las placas del condensador, a través del aislante. Esto llevó a que Maxwell hipotetizara que un campo eléctrico que varía en el tiempo genera una “corriente de desplazamiento”. Desde un punto de vista matemático, esta hipotética corriente de desplazamiento constituía un término adicional de la ecuación diferencial que relaciona una corriente convencional al campo magnético que genera.

La asombrosa consecuencia del término adicional de la ecuación fue que permitía que los campos eléctricos y magnéticos se sustentaran entre sí sin la necesidad de cargas (hasta entonces, un campo eléctrico era lo que rodeaba a un cuerpo cargado y un campo magnético lo que rodeaba a un cable con carga. No obstante, este término adicional significaba que un campo eléctrico que variara en el tiempo generaría un campo magnético que también variaría en el tiempo, y Faraday ya había demostrado que estos campos magnéticos generaban un campo eléctrico variable en el tiempo, ¡lo que provoca que el campo magnético regenere el campo eléctrico original, sin la necesidad de una carga! ¿Era correcta esta asombrosa conclusión o el término adicional en la ecuación era solo un error?

Maxwell pudo calcular la velocidad a la que las oscilaciones acopladas de los campos magnéticos y eléctricos se propagarían en un vacío, la que coincidía dentro de los márgenes de error experimentales con la velocidad medida de la luz. Con esto, llegó a la conclusión de que el término adicional era correcto y que la luz efectivamente se componía de oscilaciones en los campos eléctrico y magnético que se sustentan mutuamente. Dada la corta longitud de onda de la luz (aproximadamente 0,0005 mm), la frecuencia de oscilación debe ser extremadamente rápida. Las oscilaciones a frecuencias más bajas estarían asociadas con una mayor longitud de onda. En 1886, Heinrich Hertz generó y detectó estas ondas “de radio”.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Astrofísica»

Представляем Вашему вниманию похожие книги на «Astrofísica» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


James Benn - The White Ghost
James Benn
James Benn - A Blind Goddess
James Benn
James Benn - Death
James Benn
James Benn - Rag and Bone
James Benn
James Benn - A Mortal Terror
James Benn
James Benn - Evil for evil
James Benn
James Benn - Blood alone
James Benn
James Benn - The First Wave
James Benn
James Bowen - Scouting Dave
James Bowen
Отзывы о книге «Astrofísica»

Обсуждение, отзывы о книге «Astrofísica» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x