Genome Editing in Drug Discovery
Здесь есть возможность читать онлайн «Genome Editing in Drug Discovery» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.
- Название:Genome Editing in Drug Discovery
- Автор:
- Жанр:
- Год:неизвестен
- ISBN:нет данных
- Рейтинг книги:5 / 5. Голосов: 1
-
Избранное:Добавить в избранное
- Отзывы:
-
Ваша оценка:
- 100
- 1
- 2
- 3
- 4
- 5
Genome Editing in Drug Discovery: краткое содержание, описание и аннотация
Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Genome Editing in Drug Discovery»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.
A practical guide for researchers and professionals applying genome editing techniques to drug discovery Genome Editing in Drug Discovery,
Genome Editing in Drug Discovery
Genome Editing in Drug Discovery
Genome Editing in Drug Discovery — читать онлайн ознакомительный отрывок
Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Genome Editing in Drug Discovery», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.
Интервал:
Закладка:
55 Mou, H., Smith, J.L., Peng, L. et al. (2017). CRISPR/Cas9‐mediated genome editing induces exon skipping by alternative splicing or exon deletion. Genome Biol. 18: 108.
56 Munoz, D.M., Cassiani, P.J., Li, L. et al. (2016). CRISPR screens provide a comprehensive assessment of cancer vulnerabilities but generate false‐positive hits for highly amplified genomic regions. Cancer Discov. 6: 900–913.
57 Najm, F.J., Strand, C., Donovan, K.F. et al. (2018). Orthologous CRISPR‐Cas9 enzymes for combinatorial genetic screens. Nat. Biotechnol. 36: 179–189.
58 Oughtred, R., Stark, C., Breitkreutz, B.J. et al. (2019). The BioGRID interaction database: 2019 update. Nucleic Acids Res. 47: D529–D541.
59 Pattanayak, V., Lin, S., Guilinger, J.P. et al. (2013). High‐throughput profiling of off‐target DNA cleavage reveals RNA‐programmed Cas9 nuclease specificity. Nat. Biotechnol. 31: 839–843.
60 Pichler, F.B. and Turner, S.J. (2007). The power and pitfalls of outsourcing. Nat. Biotechnol. 25: 1093–1096.
61 Popp, M.W. and Maquat, L.E. (2016). Leveraging rules of nonsense‐mediated mRNA decay for genome engineering and personalized medicine. Cell 165: 1319–1322.
62 Qiu, P., Shandilya, H., D'alessio, J.M. et al. (2004). Mutation detection using Surveyor nuclease. BioTechniques 36: 702–707.
63 Ran, F.A., Cong, L., Yan, W.X. et al. (2015). in vivo genome editing using Staphylococcus aureus Cas9. Nature 520: 186–191.
64 Rosenbluh, J., Xu, H., Harrington, W. et al. (2017). Complementary information derived from CRISPR Cas9 mediated gene deletion and suppression. Nat. Commun. 8: 15403.
65 Safari, F., Zare, K., Negahdaripour, M. et al. (2019). CRISPR Cpf1 proteins: structure, function and implications for genome editing. Cell Biosci. 9: 36.
66 Sanson, K.R., Hanna, R.E., Hegde, M. et al. (2018). Optimized libraries for CRISPR‐Cas9 genetic screens with multiple modalities. Nat. Commun. 9: 5416.
67 Sanson, K.R., Deweirdt, P.C., Sangree, A.K. et al. (2020). Optimization of AsCas12a for combinatorial genetic screens in human cells. bioRxiv https://www.biorxiv.org/content/10.1101/747170v1.
68 Seki, A. and Rutz, S. (2018). Optimized RNP transfection for highly efficient CRISPR/Cas9‐mediated gene knockout in primary T cells. J. Exp. Med. 215: 985–997.
69 Sharpe, J.J. and Cooper, T.A. (2017). Unexpected consequences: exon skipping caused by CRISPR‐generated mutations. Genome Biol. 18: 109.
70 Shifrut, E., Carnevale, J., Tobin, V. et al. (2018). Genome‐wide CRISPR screens in primary human T cells reveal key regulators of immune function. Cell 175: 1958–1971. e15.
71 Slaymaker, I.M., Gao, L., Zetsche, B. et al. (2016). Rationally engineered Cas9 nucleases with improved specificity. Science 351: 84–88.
72 Smits, A.H., Ziebell, F., Joberty, G. et al. (2019). Biological plasticity rescues target activity in CRISPR knock outs. Nat. Methods 16: 1087–1093.
73 Song, C.Q., Li, Y., Mou, H. et al. (2017). Genome‐wide CRISPR screen identifies regulators of mitogen‐activated protein kinase as suppressors of liver tumors in mice. Gastroenterology 152: 1161–1173. e1.
74 Strezoska, Z., Perkett, M.R., Chou, E.T. et al. (2017). High‐content analysis screening for cell cycle regulators using arrayed synthetic crRNA libraries. J. Biotechnol. 251: 189–200.
75 Tak, Y.E., Kleinstiver, B.P., Nunez, J.K. et al. (2017). Inducible and multiplex gene regulation using CRISPR‐Cpf1‐based transcription factors. Nat. Methods 14: 1163–1166.
76 Takeda, H., Kataoka, S., Nakayama, M. et al. (2019). CRISPR‐Cas9‐mediated gene knockout in intestinal tumor organoids provides functional validation for colorectal cancer driver genes. Proc. Natl. Acad. Sci. U. S. A. 116: 15635–15644.
77 Thomas, J.D., Polaski, J.T., Feng, Q. et al. (2020). RNA isoform screens uncover the essentiality and tumor‐suppressor activity of ultraconserved poison exons. Nat. Genet. 52: 84–94.
78 Tuladhar, R., Yeu, Y., Tyler Piazza, J. et al. (2019). CRISPR‐Cas9‐based mutagenesis frequently provokes on‐target mRNA misregulation. Nat. Commun. 10: 4056.
79 Tzelepis, K., Koike‐Yusa, H., De Braekeleer, E. et al. (2016). A CRISPR dropout screen identifies genetic vulnerabilities and therapeutic targets in Acute Myeloid Leukemia. Cell Rep. 17: 1193–1205.
80 Vakulskas, C.A., Dever, D.P., Rettig, G.R. et al. (2018). A high‐fidelity Cas9 mutant delivered as a ribonucleoprotein complex enables efficient gene editing in human hematopoietic stem and progenitor cells. Nat. Med. 24: 1216–1224.
81 Van Der Meer, D., Barthorpe, S., Yang, W. et al. (2019). Cell Model Passports‐a hub for clinical, genetic and functional datasets of preclinical cancer models. Nucleic Acids Res. 47: D923–D929.
82 Wang, T., Birsoy, K., Hughes, N.W. et al. (2015). Identification and characterization of essential genes in the human genome. Science 350: 1096–1101.
83 Wei, J., Long, L., Zheng, W. et al. (2019). Targeting REGNASE‐1 programs long‐lived effector T cells for cancer therapy. Nature 576: 471–476.
84 Wienert, B., Wyman, S.K., Richardson, C.D. et al. (2019). Unbiased detection of CRISPR off‐targets in vivo using DISCOVER‐Seq. Science 364: 286–289.
85 Wiszniewska, J., Bi, W., Shaw, C. et al. (2014). Combined array CGH plus SNP genome analyses in a single assay for optimized clinical testing. Eur. J. Hum. Genet. 22: 79–87.
86 Wu, J. and Yin, H. (2019). Engineering guide RNA to reduce the off‐target effects of CRISPR. J. Genet. Genomics 46: 523–529.
87 Yau, E.H., Kummetha, I.R., Lichinchi, G. et al. (2017). Genome‐wide CRISPR screen for essential cell growth mediators in mutant KRAS colorectal cancers. Cancer Res. 77: 6330–6339.
88 Ye, L., Park, J.J., Dong, M.B. et al. (2019). in vivo CRISPR screening in CD8 T cells with AAV‐sleeping beauty hybrid vectors identifies membrane targets for improving immunotherapy for glioblastoma. Nat. Biotechnol. 37: 1302–1313.
89 Yeung, A.T.Y., Choi, Y.H., Lee, A.H.Y. et al. (2019). A genome‐wide knockout screen in human macrophages identified host factors modulating salmonella infection. MBio 10.
90 Zetsche, B., Gootenberg, J.S., Abudayyeh, O.O. et al. (2015). Cpf1 is a single RNA‐guided endonuclease of a class 2 CRISPR‐Cas system. Cell 163: 759–771.
91 Zhang, F. (2019). Development of CRISPR‐Cas systems for genome editing and beyond. Q. Rev. Biophys. 52: 1–31.
92 Zhao, Y., Tyrishkin, K., Sjaarda, C. et al. (2019). A one‐step tRNA‐CRISPR system for genome‐wide genetic interaction mapping in mammalian cells. Sci. Rep. 9: 14499.
93 Zischewski, J., Fischer, R., and Bortesi, L. (2017). Detection of on‐target and off‐target mutations generated by CRISPR/Cas9 and other sequence‐specific nucleases. Biotechnol. Adv. 35: 95–104.
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.
Интервал:
Закладка:
Похожие книги на «Genome Editing in Drug Discovery»
Представляем Вашему вниманию похожие книги на «Genome Editing in Drug Discovery» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.
Обсуждение, отзывы о книге «Genome Editing in Drug Discovery» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.