Der V-Gate Magnetmotor ist ein Kreisbeschleuniger.
Im Gegensatz zum Linearbeschleuniger, werden hier die 2 Magnetreihen um ein Rohr oder Rad herumgeführt. Durch die kreisförmige Anordnung der Magnete, wird der Rotor beschleunigt. Ein Längsmagnet dient als stehender Teil (Stator). Wenn die Magnetreihen einmal um den Rotor herumgeführt werden, treffen die Magnete der Außenlinie auf die der Innenlinie.
––––––––
NUN ERHALTEN SIE NOCH weitere Berechnungen und Formelsammlungen von Howard Johnson.
Seine Arbeit drehte sich viel um simple mathematische Beobachtungen und Berechnungen. Dabei angefangen mit dem Coulombsche Gesetz.:
Die Aktion der f- Linie mit der Distanz der geraden Linie zwischen den Polen, die die Überlagerungseigenschaften bezogen auf mehrere Pole und die Beschränkung auf im Raum fixierte Systeme sind alles bekannte Bedingungen. Diese verwenden die Überlagerungseigenschaften. um die Anwendung einer räumlichen Domain zu vergrößern, mit viel mehr Polen. Allerdings wird dies zuerst in Zahlen aufgeteilt, um die analytischen Ausdrücke besser entwickeln zu können.
Unsere Analyse wird zweidimensional und auf derselben Ebene sein, begrenzt durch die vertikale x-y Ebene. Es muss beachtet werden, dass die horizontale Ständer „Spur“ von Howard Johnsons linearem Modell viele flache Magnete mit rechteckigem Querschnitt aufweist, jeder mit einem Seitenverhältnis (Länge x Dicke) von 16. Dieser hohe Wert ist der Grund für diese Zweidimensionalität des Modells und hilft bei der Minimalisierung und Effektierung der z Richtung. Dies ist die Begründung für die zweidimensionale Analyse, zumindest im Fall des linearen Modells, welches wir hier betrachten.
Auch wenn das Coulombsche Gesetz immer wieder Misstrauen erweckt, bietet es eine einfache und dennoch brauchbare Form. Es beschreibt die Interaktionen zwischen zwei magnetischen Mono- Polen.
Wobei M und M‘ die Polstärke beschreibt (positiv, wenn nördlich, negativ, wenn südlich), u ist die Permeabilität des Mediums, in dem die Pole liegen, r ist der Abstand zwischen den beiden Polen in einer geraden Linie und f ist der Kraftvektor, der sich auf jeden Pol einzeln auswirkt, positiv für Abstoßen und negativ für Anziehen.
Das Coulombsche Gesetz
Das Coulombsche Gesetz ist ein ganz wichtiges Gesetz aus den Grundlagen der Elektrostatik. Es besagt in Worten ausgedrückt: Die Kraft zwischen zwei Punktladungen ist dem Produkt der beiden Ladungen direkt und dem Quadrat ihres Abstandes umgekehrt proportional. Die Richtung der Kraft fällt mit der Verbindungslinie der beiden Ladungen zusammen. So und wer das nun nicht verstanden hat, setzt einfach die passenden Werte in die folgende Gleichung ein:
Dabei ist:
"F" die Kraft in Newton
"Q1" und "Q2" die Ladungen in Coulomb – in unserem Beispiel jedoch M und M.
"r" der Abstand in Metern
"ε0" die elektrische Feldkonstante
"π" die Kreiszahl, π = 3,14159...
Der Zahlenwert für die elektrische Feldkonstante kann dabei nicht auf theoretischem Weg ermittelt werden, sondern muss bei einem Versuch gemessen werden. Die Kraft zwischen den Ladungen wirkt abstoßend, wenn die Ladungen das gleiche Vorzeichen haben. Daraus ergibt sich F > 0. Ist das Vorzeichen der beiden Ladungen verschieden, ziehen sich die beiden Ladungen an, die Kraft F ist kleiner als Null ( F < 0 ).
Das Coulombsche Gesetz bedient sich der Vorstellung einer Punktladung. Darunter stellt man sich eine Ladung vor, die nur an einem einzelnen Punkt vorhanden ist. Dies ist jedoch eine theoretische Modellvorstellung. In der Realität ist es so, dass eine Ladung niemals in einem Punkt, sondern immer nur auf einem Körper mit endlicher Ausdehnung sitzen kann. Das Coulombsche Gesetz kann dennoch praktisch eingesetzt werden: Sofern die Ladungen auf einer Kugeloberfläche gleichmäßig verteilt werden, kann der Abstand der Kugelmittelpunkte als Abstand entsprechender Punktladungen aufgefasst werden.
Um einige der Voraussetzungen und Erweiterungen des Coulombsche Gesetzes zu illustrieren, wollen wir zuerst ein einfaches Beispiel eines magnetischen Plattees, welches entlang der x-Achse liegt. Das Platte, mit einer begrenzten Länge L, ist ein permanenter Magnet, magnetisiert über seine y- Richtungs-Dicke und mit einem hohen Seitenverhältnis (um z-Richtungs-Eckeffekte zu eliminieren). Die Südpol- Seite wird aufwärtsgerichtet, mit Nordseite abwärts auf der Unterseite des Plattees. Unterseiten-Effekte werden ignoriert, als ob das Platte eine kontinuierliche Verteilung von nur südlichen Monopolen entlang der x-Achse zeigt. Um diese Verteilung zu integrieren, tauschen wir M' mit dem Differenzial dM' und setzen die Funktion B (x) ein, sodass es am Ende folgender Maßen aussieht: dM’ = B(x) dx
Die Größe der gesamten Stärkeübertragung, F, basierend auf einem isolierten nördlichen Monopol mit Stärke M, platziert irgendwo in der oberen Hälfte der x-y Ebene, wird
wobei x das Verhältnis x/L ist. Angenommen die Magnetstärke entlang des Plattees kann von der südlichen Konstanten -B repräsentiert werden und vernachlässigt Endeffekte bei x = 0 und x = L, reduziert auf
wobei der Stärkeparameter M' durch die Integration festgelegt wurde – über die Plattenlänge L und p ist das Verhältnis r/L.

Nun kommt das Symmetrisch positioniertes, nördliches Monopol über dem Zentrum einer magnetisierten, anziehenden Platte. (Zentrum Bild 1)
Danach kommt die Wirkung des Kräfteungleichgewichtes auf ein Nord Monopol über einer magnetisierten Platte und neigt dazu, den Pol zum Blatt wiederherzustellen.
(Zentrum Bild 2)
Wenn das nördliche Monopol direkt über dem Zentrum der Platte platziert wird, an den Koordinaten (E,n), mit E=L/2 und der vertikalen luftspalten Separationsdistanz der zunehmenden Kraftvektoren, welche auf (E,n) wirken, ist das Resultat wie oben im Zentrum Bild 1 gezeigt wird. Beachten Sie, dass eine Verschiebung des Nord Monopols nach links ein Kräfteungleichgewicht erzeugt, welches den Pol nach rechts zurückzieht, wie hier im Zentrum Bild 2 gezeigt wird. Wenn wir jetzt nur die x-Komponente von F berücksichtigen, schreiben wir
Читать дальше