Catalytic Asymmetric Synthesis

Здесь есть возможность читать онлайн «Catalytic Asymmetric Synthesis» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Catalytic Asymmetric Synthesis: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Catalytic Asymmetric Synthesis»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Seminal text presenting detailed accounts of the most important catalytic asymmetric reactions known today
Catalytic Asymmetric Synthesis

Catalytic Asymmetric Synthesis — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Catalytic Asymmetric Synthesis», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

12 Chapter 12Scheme 12.1. Various modes of C(sp 3)–H activation.Scheme 12.2. C(sp 3)–H bond insertion by metal carbenoids and metal nitrenoid...Scheme 12.3. General catalytic cycle of C(sp 3)–H bond insertion by metal car...Figure 12.1. Classification of metal carbenoids.Scheme 12.4. C–H insertion of alkanes with aryldiazoacetates. (a) C–H insert...Scheme 12.5. C–H insertion of alkanes with azavinyl carbenoids.Scheme 12.6. C–H insertion of primary and secondary C–H bonds with Rh porphy...Scheme 12.7. Highly selective C–H insertion of primary C–H bonds.Scheme 12.8. Highly selective carbenoid insertion into secondary C–H bonds....Scheme 12.9. Highly selective carbenoid insertion into tertiary C–H bonds....Figure 12.2. Chiral metal complexes for asymmetric C–H insertion of 1,4‐cycl...Scheme 12.10. C–H insertion of electron‐deficient methyl sites.Scheme 12.11. C–H insertion of allylic and benzylic C–H bonds with triazoles...Scheme 12.12. Synthesis of β‐arylpyrrolidines.Scheme 12.13. Carbenoid insertion into benzylic C–H bonds of substituted eth...Scheme 12.14. Carbenoid insertion into benzylic C–H bonds of benzyl silyl et...Scheme 12.15. Synthesis of 2,3‐dihydrobenzofurans by sequential C–H function...Scheme 12.16. Synthesis of 2,3‐dihydrobenzofurans by sequential C–H function...Figure 12.3. Immobilized Cu(box) complex.Scheme 12.17. C–H insertion of phthalan and dihydrofuran derivatives.Scheme 12.18. C–H insertion of silicon‐substituted alkanes with 1‐sulfonyl‐1...Scheme 12.19. C–H insertion of silicon‐substituted alkanes with aryl diazoac...Scheme 12.20. Application of the combined C–H functionalization/Cope rearran...Scheme 12.21. Intramolecular C–H insertion with α‐diazosulfones. (a) Synthes...Figure 12.4. Chiral metal catalysts used for synthesis of β‐lactones.Scheme 12.22. Intramolecular C–H insertion by non‐diazo approaches. (a) Synt...Scheme 12.23. C–H insertion in carbene/alkyne metathesis (CAM).Scheme 12.24. General catalytic cycle of C(sp 3)–H bond insertion of metal ni...Figure 12.5. Chiral metal catalysts used for C–H amination of indane.Scheme 12.25. Diastereoselective C–H amination of indane with chiral sulfoni...Scheme 12.26. Enantioselective intermolecular benzylic C–H amination with su...Scheme 12.27. Enantioselective intermolecular benzylic C–H amination with su...Figure 12.6. Chiral metal catalysts used for the synthesis of cyclic sulfami...Scheme 12.28. Enantioselective intermolecular benzylic C–H amination with su...Figure 12.7. Chiral metal catalysts used for C–H amination with azides.Scheme 12.29. Diastereoselective C–H amination of indane with chiral sulfoni...Figure 12.8. Chiral metal catalysts used for C–H amination with dioxazolones...Scheme 12.30. Asymmetric synthesis of γ‐lactams via C–H amidation enabled by...Scheme 12.31. Asymmetric enzymatic C–H primary amination.Scheme 12.32. Concerted metalation‐deprotonation (CMD).Scheme 12.33. Early discovery of C(sp 3)–H activation.Scheme 12.34. Dyker’s synthesis of benzocyclobutane.Scheme 12.35. Pd(0)/PAr 3‐catalyzed intramolecular arylation.Scheme 12.36. Pd(0)‐catalyzed enantioselective intramolecular arylation.Scheme 12.37. Baudoin’s asymmetric synthesis of indanes.Scheme 12.38. Pd(0)‐catalyzed arylation of unactivated acylic methylenes.Scheme 12.39. Chiral phosphoric acid catalyst promoted intramolecular arylat...Scheme 12.40. Enantioselective intramolecular arylation of cyclopropanes.Scheme 12.41. Enantioselective trifluoroacetimidoylation of cyclopropane.Scheme 12.42. Pd(0)‐catalyzed directed intermolecular arylation.Scheme 12.43. Cramer’s synthesis of chiral β‐lactams.Scheme 12.44. Cramer’s synthesis of chiral γ‐lactams.Scheme 12.45. Pd(II) catalysis for C(sp 3)–H activation.Scheme 12.46. Yu’s preliminary asymmetric C(sp 3)–H activation.Scheme 12.47. Oxidative arylation of α‐tertiary amide.Scheme 12.48. Oxidative arylation with aryl boronic acid.Scheme 12.49. Enantioselective desymmetrization of thioamide.Scheme 12.50. Enantioselective desymmetrization of triflamide.Scheme 12.51. Arylation of cyclic α‐tertiary carboxylic acids.Scheme 12.52. Arylation of aliphatic amines. (a) β‐C(sp 3)–H amination. (b) β...Scheme 12.53. Redox‐neutral arylation of C(sp 3)–H bond in small rings.Scheme 12.54. Directed arylation of benzylic positions.Scheme 12.55. Arylation of aldehyde/ketone via transient directing group str...Scheme 12.56. (Top and bottom) Bidentate‐ligand‐enabled arylation of unactiv...Scheme 12.57. Phosphoric acid enabled arylation of unactivated methylenes.Scheme 12.58. Arylation of cyclopropane‐containing acids/amines.Scheme 12.59. Directed enantioselective borylation of cyclobutane.Scheme 12.60. Enantioselective fluorination of benzylic position.Scheme 12.61. Synthesis of chiral aziridines.Scheme 12.62. Synthesis of chiral β‐lactams.Scheme 12.63. Benzoquinone‐assisted Pd(0)‐catalyzed allylic C(sp 3)–H activat...Scheme 12.64. Enantioselective allylic C(sp 3)–H alkylation.Scheme 12.65. Enantioselective allylic C(sp 3)–H acetoxylation.Scheme 12.66. Asymmetric intramolecular oxidation of allylic C(sp 3)–H bond....Scheme 12.67. Chiral‐Ir(III) catalyzed amination of methyl group.Scheme 12.68. Co(III) and Rh(III)‐catalyzed asymmetric amination reactions....Scheme 12.69. Ir(III) and Rh(III)‐catalyzed asymmetric C(sp 3)–H activation....Scheme 12.70. General mechanism of C–H activation via oxidative addition.Scheme 12.71. Achiral allylic C–H activation/C–C bond formation by Yu.Scheme 12.72. Asymmetric allylic C–H activation/C–C bond formation by Yu.Scheme 12.73. Enantioselective alkylation of allyl benzene by Mita and Sato....Scheme 12.74. α‐Nitrogen C(sp 3)–H alkylation of linear amines by Shibata....Scheme 12.75. α‐Nitrogen C(sp 3)–H alkylation of cyclic amines by Shibata.Scheme 12.76. Two‐fold C(sp 3)–H alkylation of N ‐methyl amines by Nishimura....Scheme 12.77. C(sp 3)–H alkylation of methyl amines and ethers by Ohmura and ...Scheme 12.78. Tandem dehydrogenation/C–H alkylation by Suginome.Scheme 12.79. Modification of C(sp 3)–H borylation mechanisms based on used l...Scheme 12.80. C(sp 3)–H borylation directed by pyridine by Sawamura.Scheme 12.81. Carbonyl directed C(sp 3)–H borylation by Sawamura.Scheme 12.82. Carbonyl directed C(sp 3)–H γ‐borylation by Sawamura.Scheme 12.83. C(sp 3)–H borylation of cyclopropanes by Xu.Scheme 12.84. C(sp 3)–H borylation of cyclobutanes by Xu.Scheme 12.85. Pyrazole‐directed C(sp 3)–H borylation by Xu.Scheme 12.86. C(sp 3)–H borylation of tetrahydroisoquinolines and other azahe...Scheme 12.87. Carbonyl directed C(sp 3)–H borylation by Xu.Scheme 12.88. The proposed catalytic cycles for transition metal‐catalyzed C...Scheme 12.89. Achiral C(sp 3)–H dehydrogenative silylations.Scheme 12.90. First enantioselective C(sp 3)–H dehydrogenative silylations.Scheme 12.91. Enantioselective C(sp 3)–H silylation of cyclopropanes by Hartw...Scheme 12.92. The two‐step protocol for C(sp 3)–H silylation by Hartwig.Scheme 12.93. Enantioselective C(sp 3)–H silylation by He.Scheme 12.94. Ir‐catalyzed C(sp 3)–H activation/silylation by Hartwig.Scheme 12.95. Ir‐catalyzed C(sp 3)–H activation/silylation of amines by Hartw...

13 Chapter 13Scheme 13.1. Pd‐catalyzed asymmetric synthesis of allylic fluorides.Scheme 13.2. Pd‐catalyzed enantioselective fluorination of acyclic allylic c...Scheme 13.3. Ir‐catalyzed enantioselective fluorination of allylic trichloro...Scheme 13.4. Pd‐catalyzed oxidative 1,2‐fluoroarylation of styrenes.Scheme 13.5. 1,1‐Fluoarylation of allyl amines.Scheme 13.6. Heck arylation‐oxidative fluorination.Scheme 13.7. Catalytic enantioselective fluorination of β‐ and α‐ketoesters....Scheme 13.8. Pd‐catalyzed enantioselective α‐arylation of α‐fluoroketones.Scheme 13.9. S N2 reactivity of the Colby pro‐enolates with MBH carbonates....Scheme 13.10. Mannich reactions of 2‐fluoro‐1,3‐diketones/hydrates and isati...Scheme 13.11. 1,3‐Dipolar cycloaddition of azomethine ylides with β‐fluoroac...Scheme 13.12. S N2 fluorination of alkyl bromides by copper(I) fluoride compl...Scheme 13.13. Enantioselective fluorination of α‐aryl cyclohexanones.Scheme 13.14. α‐Fluorination of β‐ketoesters.Scheme 13.15. Asymmetric fluorocyclization of allylic amines.Scheme 13.16. Electrophilic fluorination of allylic alcohol substrates.Scheme 13.17. Fluorocyclization of tryptamines.Scheme 13.18. Asymmetric β‐fluoroamine synthesis from β‐haloamines.Scheme 13.19. Asymmetric α‐fluorination of aldehydes.Scheme 13.20. Asymmetric α‐fluorination of α‐substituted aldehydes.Scheme 13.21. Selective α‐fluorination of ketones.Scheme 13.22. Asymmetric fluorination of 1,3‐dicarbonyl compounds.Scheme 13.23. NHC‐catalyzed oxidative α‐fluorination of aldehydes.Scheme 13.24. Fluorination of 2‐substituted ( E )‐cinnamamides.Scheme 13.25. Preparation of chiral α‐chloroaldehydes from enals.Scheme 13.26. Three‐step synthesis of chiral α‐chloroketones from enaminones...Scheme 13.27. Asymmetric vicinal dichlorination of styrenes, allylic alcohol...Scheme 13.28. Asymmetric chlorocyclization reactions.Scheme 13.29. Desymmetrizing chlorination of diolefins using chiral sulfide ...Scheme 13.30. Kinetic resolution of allylic amides through an intramolecular...Scheme 13.31. Asymmetric chlorination of α‐substituted β‐ketoesters.Scheme 13.32. Asymmetric chloroetherification of enones catalyzed by chiral Scheme 13.33. Asymmetric chloroamination of unsaturated olefins catalyzed by...Scheme 13.34. Kinetic resolution of tetrahydropyridine allyl chlorides.Scheme 13.35. Asymmetric bromoamination of chalcones with NBS catalyzed by c...Scheme 13.36. Asymmetric haloazidation of allylic alcohols.Scheme 13.37. Asymmetric haloazidation of allylic alcohols.Scheme 13.38. Enantioselective bromoaminocyclization of tosylcarbamate deriv...Scheme 13.39. Asymmetric organocatalytic bromolactonization of α‐ exo ‐methyle...Scheme 13.40. Asymmetric organocatalytic bromohydroxylation of aryl olefins ...Scheme 13.41. Asymmetric organocatalytic 5‐ exo and 6‐ endo ‐bromolactonization...Figure 13.1. BINAP ligands used in bromofunctionalization reactions.Scheme 13.42. Enantioselective bromolactonization of deactivated olefinic ac...Scheme 13.43. Organocatalysts used in the asymmetric α‐bromination of aldehy...Scheme 13.44. Mechanism of cyclization by iodoamination or iodolactonization...Scheme 13.45. Asymmetric iodoamination reaction developed by Jacobsen’s grou...Scheme 13.46. Iodoaminocyclization procedure developed by Tripathi and Mukhe...Scheme 13.47. Effects of KBr vs KI additive in the iodoaminocyclization reac...Scheme 13.48. TRIP‐catalyzed enantioselective addition of NIS to enecarbamat...Scheme 13.49. Formation of chiral cyclic ureas described by Struble and cowo...Scheme 13.50. Iodoamination with concomitant trapping of CO 2.Scheme 13.51. Enantioselective iodolactonizations catalyzed by tri‐Zn comple...Scheme 13.52. Desymmetrization of diallylacetic acid derivatives catalyzed b...Scheme 13.53. Desymmetrization reaction described by the Johnston group.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Catalytic Asymmetric Synthesis»

Представляем Вашему вниманию похожие книги на «Catalytic Asymmetric Synthesis» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Catalytic Asymmetric Synthesis»

Обсуждение, отзывы о книге «Catalytic Asymmetric Synthesis» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x