Примененный метод основан на определении роли в мантии безоливинового пироксенита (далее реакционный пироксенит), образованного в результате реакции андезитовых выплавок эклогитизированного вещества океанической коры и мантийного перидотита ( Sobolev et al., 2005, 2007; Yaxley, Green, 1998; Yaxley, Sobolev, 2007 ). Экспериментальные данные плавления пироксенита при давлениях 2–4 ГПа ( Pertermann, Hirschmann, 2003; Sobolev et al., 2007 ) показывают, что реакционный пироксенит по сравнению с перидотитом характеризуется повышенной легкоплавкостью и значительным обогащением выплавок Ni относительно Mg, а также их обеднением Mn относительно Fe (рис. 1). Из этого следует, что составы вкрапленников оливина, кристаллизующиеся из продуктов плавления пироксенитов при малых давлениях будут отличаться от равных по магнезиальности вкрапленников оливина продуктов плавления перидотитов повышенным содержанием Ni и пониженной концентрацией Mn. Этот результат находится в полном соответствии с теоретическими предположениями ( Humayun et al., 2004; Sobolev et al., 2005, 2007 ), основанными на анализе различий коэффициентов распределения между расплавом и безоливиновым (реакционный пироксенит) и богатым оливином (перидотит) кристаллическим остатком. Полученные экспериментальные данные и их моделирование на основе известных алгоритмов равновесия оливин-расплав ( Beattie, 1993; Herzberg, O’Hara, 2002; Kinzler et al., 1990 ) позволили количественно определить зависимость доли расплава реакционного пироксенита в смеси с продуктами плавления перидотита от Mn/Fe и Ni/(Mg/Fe) равновесного оливина ( Sobolev et al., 2008 ). Эти зависимости далее применены к новым данным о составе оливина исследованных базальтов.
Рис. 1. Степень плавления и состав экспериментальных расплавов пироксенита и перидотита в зависимости от температуры (Sobolev et al., 2007). Кристаллические фазы сосуществующие с расплавом: Ol – оливин; Opx – ортопироксен; Cpx – клинопироксен; Ga – гранат. Голубыми и красными эллипсами оконтурены составы, которые усреднялись для определения граничных компонентов частичного расплава перидотита и пироксенита соответственно.
3. Состав продуктов магматизма хребта Книповича и о. Шпицберген
3.1. Объекты исследования
Исследованы сопряженные объекты: базальты хребта Книповича и о. Шпицберген (рис. 2, 3). Перемещение оси спрединга хребта Книповича и последующий раздвиг совпадает по времени с проявлением магматической активности в пределах архипелага Свальбард (около 20 млн. лет назад ( Prestvik., 1977 )). Этот магматизм проявился в виде покровных базальтов (рис. 2). Процесс магматической активизации продолжался вплоть до 10 млн. лет назад. В четвертичное время, около 1 млн. лет назад, этот процесс привел к формированию трех щелочных вулканов, расположенных на северном окончании Брейбогенского разлома ( Prestvik., 1977 ). Само формирование Норвежско-Гренландского бассейна происходило циклично со сменой этапов тектонической и магматической активности на продолжительные периоды покоя, что отражается и в аномальном геологическом строении ( Czuba et al., 2004 ). Можно предположить, что спрединговая активность в Норвежско-Гренландском бассейне могла стимулировать магматическую активность и в пределах континентальной окраины архипелага Свальбард ( Crane et al.,1991 ).
Рис. 2. Схема обнажений покровов и места опробования неогеновых платобазальтов на острове Шпицберген по (Сущевская и др., 2009). На врезке справа показано современное положение Шпицбергена относительно спрединговых зон.
Рис. 3. Карта распространения пород, драгированных в ходе 24 рейса НИС «Академик Николай Страхов». Составлена А.А. Пейве на рельефе, полученном Добролюбовой К.О., Абрамовой А.С., Зарайской Ю.А., Барамыковым Ю.Е. и Пономаревым А.С. в результате обработки данных многолучевого эхолота Seabat 8150. Черным пунктиром оконтурены детально исследованные базальты.
3.2. Базальты хребта Книповича
В 2006 г. в ходе 24-го рейса НИС «Академик Страхов» было проведено опробование бортов рифтовой долины и небольших вулканических построек в районе 77°54’–77°24’ с.ш. Также впервые успешно драгированы фланговые структуры северной части хребта Книповича (рис. 3). Свежие базальты представлены афировыми разностями с редкими фенокристами оливина, содержание которых колеблется от 0,1 до 3–5 %. Присутствие лишь оливина в стеклах свидетельствует о примитивности расплава. Ранее поднятые базальты в рифтовой долине хребта Книповича также содержали оливин в свежих стеклах и относились к типу родоначальных расплавов, генерирующихся на небольших глубинах, с более низкой степенью плавления по сравнению с большинством океанических хребтов (тип Na – ТОР). Подобные толеиты типичны для хребтов cо сверхмедленным спердингом ( Michael, P.J. et al., 2003; Dick et al., 2003 ) и отличаются пониженным содержаниям Fe и повышенным Na и Si в родоначальных расплавах ( Сущевская и др., 2005 ).
Читать дальше
Конец ознакомительного отрывка
Купить книгу