Работы в описываемом рейсе НИС «Академик Николай Страхов» выполнялись с помощью новой модификации известной и апробированной серии геотермических зондов «ГЕОС» – зондом «ГЕОС-М». Зонд предназначен для автоматичного высокоточного измерения температуры донных осадков; градиента температур и теплопроводности осадков на четырех измерительных базах; гидростатического давления (глубины); температуры воды; угла внедрения зонда в осадки (отклонения от вертикали); определения на основе полученных данных глубинного теплового потока через дно акватории. Кроме того, зонд позволяет осуществить вертикальное температурное зондирование водной толщи. По кабель-тросу осуществляется управление процессом измерения, вся получаемая информация поступает в набортный компьютер.
2. Данные о тепловом потоке на полигоне ЗФИ
Не повторяя полного описания результатов работ на полигоне ЗФИ, приведенных в статье ( Хуторской и др., 2009 ), остановимся на двух моментах.
Первое. На полигоне выполнено семь измерений теплового потока и температуры в толще воды (табл. 1).
Таблица 1. Результаты измерений теплового потока на полигоне ЗФИ
В результате измерений температуры водной толщи был обнаружен слой отрицательных температур в интервале глубин 30–80 м и изотермическая зона при глубинах более 370–380 м (рис. 2). Таким образом, была определена минимальная глубина (приблизительно 370 м), при которой возможно измерять тепловой поток. При меньших глубинах сказывалась «неизотермичность» водной толщи, что обусловливало нелинейность термограммы в донных осадках и, соответственно, увеличение погрешности при оценке теплового потока. Поэтому для измерения теплового потока при глубинах 370 и более метров имелось ограниченное количество точек (рис. 3). На большинстве станций его можно было рассчитать только по показаниям температуры самых нижних баз зонда.
Рис. 2. 3D-блок-диаграмма распределения температуры воды на полигоне ЗФИ
Рис. 3. Измерения теплового потока на полигоне ЗФИ (показаны треугольниками). Точками показаны три значения теплового потока (мВт/м 2), полученные при термическом каротаже в скважинах (с запада на восток): «Нагурская» (о. Земля Александры), «Хейса» (о. Хейса) и «Северная» (о. Грэм-Бэлл).
Для полигона Шпицберген, где наиболее интересные результаты получены при замерах теплового потока на существенно больших глубинах, эта проблема не имеет решающего значения.
Второе. В целом, на полигоне отмечаются фоновые для Баренцевоморской плиты значения теплового потока (см. табл. 1). Однако два высоких значения (88 и 97 мВт/м 2) наблюдаются в точках, лежащих на линии северо-восточного простирания в пределах пролива (желоба) Франц-Виктория. С ними соседствуют две точки, отличающиеся пониженными значениями теплового потока (30–35 мВт/м 2) (см. рис. 3). Этих данных (плотности отмеченных точек) недостаточно для того, чтобы судить о конфигурации в плане элементов с высоким и пониженным тепловым потоком. Можно лишь предположить, что разделяющая их резкая градиентная зона маркирует борт желоба Франц-Виктория.
Указанных данных маловато, чтобы определенно судить об источниках и причинах повышенных значений теплового потока. В нашей предыдущей статье ( Хуторской и др., 2009 ) высказана мысль о возможной их связи с залегающими на глубине эвапоритами, районы развития которых характеризуются подобными резкими вариациями значений теплового потока. Теплопроводность каменной соли высока – 5,0–5,5 Вт/(м·К), что в 3–4 раза превышает теплопроводность вмещающих терригенных пород, которая равна 1,6–2,0 Вт/(м·К). Такой резкий контраст теплопроводности, а также крутые углы наклона границ раздела сред, при наличии соляных куполов, обусловливают перераспределение глубинного теплового потока ( Хуторской и др., 2004 ). Если допустить существование куполов на изученной площади полигона «ЗФИ», то станции замеров теплового потока со значениями 88 и 97 мВт/м 2могли бы относиться к апикальным частям куполов, а станции со значениями 30–35 мВт/м 2– к межкупольным зонам.
Отправным пунктом для такого рассуждения послужили работы ( М. Верба, 2008; В. Верба и др., 2004 ), в которых, с помощью плотностного моделирования по линии меридионального профиля МПВ Север-86, пересекающего зону перехода от океана к шельфу, включая континентальный склон, на площади к северу от ЗФИ, обосновывается наличие эвапоритового комплекса верхнемелового возраста на глубинах в несколько километров.
Читать дальше
Конец ознакомительного отрывка
Купить книгу