Что касается событий АПВ, то в климатическом плане они соответствуют похолоданиям – криохронным, ледниковым и стадиальным климатохронологическим событиям, что особенно проявлялось в северной половине Атлантики.
В целом, сложные процессы изменения структуры океанских течений оказывали существенное влияние на глобальную океанскую термохалинную циркуляцию и соответственно на формирование климата. Существующая в Мировом океане схема термохалинной циркуляции отражает современную модель данного водного конвейера, отвечающую в лучшем случае межледниковью. Однако можно полагать, что отмеченная выше динамика разного типа адвекционных событий, происходивших в северном секторе Атлантики, осложненная притоком значительной массы позднеледниковых талых ледниковых вод разных оледенений, могла вносить существенные изменения в рассматриваемый глобальный конвейер и соответственно в климатическую зональность интересующей нас северной половины Атлантического океана. На рис. 3 и 4 показана климатическая зональность Атлантики для времени максимума последнего оледенения и части среднего валдая. Последняя реконструкция сделана для временного среза 40 тыс.л.н. В основу этих реконструкций положены многочисленные результаты изучения микрофауны из отложений Северной Атлантики. Как ясно из сравнения реконструированной климатической зональности для отдельных этапов позднего плейстоцена – между ними много различий. Это позволяет сделать вывод о том, что океанская термохалинная циркуляция, игравшая значительную роль в образовании рассматриваемой зональности, была также подвержена значительным изменениям, что сказывалось на циркуляции воздушных масс и соответственно климата на прилежащей, по крайней мере, внетропической части суши. В этой связи следует полагать, что структура глобальной термохалинной циркуляции в квартере была очень динамична и неоднократно подвергалась существенным преобразованиям.
Рис. 3. Поверхностная циркуляция вод в Атлантическом океане в максимум последнего оледенения – 18 т.л.н. (по Бараш, 1988). Круговороты: ССПЦК – северный субполярный циклонический, ССТАК – северный субтропический антициклонический, ЭЗ – экваториальная зона сложной циркуляционной структуры. Фронты: СПФ – северный полярный, ССПФ – северный субполярный, СТК – северная субтропическая конвергенция, СТФ – северный тропический.
Рис. 4. Поверхностная циркуляция вод в Атлантическом океане в среднем валдае около 40 т.л.н. (по Бараш, 1988). Условные обозначения см. на рис. 4.
Еще одно важное гидрологическое событие – это неоднократно происходившие гляциоэвстатические изменения уровня океана, которые возможно объединить в гляциоэвстатические циклы (регрессия и последующая трансгрессия). Как известно, во время наименьшего последнего плейстоценового покровного оледенения уровень Мирового океана снижался примерно на 110–120 м ( Марков, Суетова, 1964 ). В результате многие мелководные моря на континентальных окраинах исчезали и вновь возникали в позднеледниковье, что способствовало грандиозным изменениям в соотношении суши и моря ( Лаврушин, 2007 ).
Во время оледенения наиболее значительными событиями явились: значительное расширение суши, существенное обмеление водных бассейнов, по крайней мере – западно-арктических морей, широкое распространение ледниковых покровов на континентальные окраины.
Во время деградации оледенения – в позднеледниковье – по существу, тренд изменения соотношения суши и моря имел обратную направленность, что было связано с быстро развивающейся позднеледниковой трансгрессией. На мелководных шельфах современных Баренцева и Карского морей в ходе трансгрессии с большой скоростью происходило разрушение последнего ледникового покрова. При этом это было связано не только с поверхностной, но и с экстремальной субмаринной абляцией ледникового покрова. В результате в зарождающемся в позднеледниковье мелководном осадочном бассейне господствовало специфическое осадконакопление, важнейшей особенностью которого было преобладание гляциотурбидитов. Среди последних значительная роль принадлежала суспензионно-мутьевым потокам, которыми был обусловлен лавинный тип седиментогенеза ( Лаврушин, 2005 ). С этим седиментационным процессом связано накопление толщи ленточноподобных ритмичнослоистых отложений с прямой градационной слоистостью. Максимальная мощность толщи отложений подобных образований, накопившихся примерно за 2000 лет, в Баренцевом море достигает 70 м ( Чистякова, Лаврушин, 2004 ). Поляк и др. ( Polyak et al., 1995 ) установили, что накопление этой толщи происходило в два кратковременных этапа гляциомаринной седиментации. Первый из них охватывал интервал времени 12,7–12,2 тыс. л.н. ( 14C возраст) – беллинг, а второй 10,5–9,9 тыс. л.н. вторая половина молодого дриаса – начало пребореала, что соответствует двум экстремальным импульсам гляциомаринной седиментации в Норвежском море в ходе происходившей позднеледниковой трансгрессии ( Polyak et al., 1995 ).
Читать дальше
Конец ознакомительного отрывка
Купить книгу