Половинки монеты изначально являются либо орлом, либо решкой. Если же вы имеете дело с запутанными частицами, то их спин заранее не определен. Каждая из них в момент измерения может с 50‑процентной вероятностью находиться либо в одном, либо в другом состоянии. Обе частицы идентичны. Лишь когда вы обращаете внимание на одну из них и ее спин в этот момент случайно оказывается направлен вверх, вторая частица, где бы она в это время ни находилась, будет иметь нижний спин. Информация о состоянии друг друга мгновенно преодолевает просторы Вселенной. Вполне возможно, что в будущем можно будет таким образом хранить секретную информацию и получать ее в любой момент, когда только потребуется.
Если бы можно было использовать этот механизм для пересылки сообщений, они доходили бы до адресата мгновенно, где бы он ни находился. Правда, этот эффект проявляется случайно и не может нести значимую информацию. Вы не можете произвольно выбирать верхний или нижний спин.
Но даже в этом случае свойство квантовых частиц обмениваться информацией на огромных расстояниях может найти полезное применение. С его помощью можно так надежно шифровать сведения, что современным компьютерам для расшифровки понадобилось бы время, сопоставимое с возрастом Вселенной. Существует также возможность квантовой телепортации, основанной на создании точных копий частиц на значительном удалении.
Единое целое из квантовых частей
Возможно, самым большим парадоксом квантовой теории является существование вашего тела. Как мы уже видели, каждый его атом состоит из квантовых частиц. Ваши органы чувств используют электрические и химические импульсы, в которых также задействованы квантовые частицы. Когда вы видите свет, пришедший от отдаленной звезды Альнилам, это значит, что квантовая частица пересекла пространство космоса, а квантовый процесс помог вашему глазу ее обнаружить.
Ваше тело – это квантовая машина, и все же вы способны воспринимать обычный, неквантовый мир, которому не свойственна неопределенность и в котором вещи не могут одновременно находиться в нескольких разных местах. Мне бы очень хотелось найти объяснение этому, но не получается. Ни один ученый не может понять, почему квантовые частицы ведут себя так, а материальные объекты, из которых они построены, – совершенно по-другому. Пока мы можем только пожать плечами и сказать: «Так уж устроен мир».
Давайте еще раз посмотрим на ночное небо. Если вы находитесь в Северном полушарии, то можете понаблюдать еще за одним объектом, который позволит раскрыть возможности вашего тела. Кассиопея – одно из самых узнаваемых созвездий (здесь снова вступает в действие способность распознавать знакомые образы). Пять ее главных звезд, образующих большую букву «W», невозможно не заметить (хотя вам она может больше напоминать букву «М»).
Однако в данный момент нас больше интересует не сама Кассиопея.
Если мысленно отнять от «W» правую «V» и представить ее себе в виде наконечника стрелы, то острие укажет на объект, находящийся на расстоянии, примерно равном ширине самой Кассиопеи. Это значительно менее известное созвездие – Андромеда. В той точке, куда сейчас устремлен ваш взгляд, находится маленькое размытое пятнышко света, едва видимое невооруженным глазом. Если вы посмотрите на него в сильный бинокль, то заметите, что это не обычная звезда.
Расположение галактики Андромеда
Если вы видите это крохотное пятнышко, значит, способны разглядеть самый маленький объект, доступный человеческому глазу без увеличения. Это туманность Андромеды – ближайшая к нашему Млечному Пути крупная галактика. Конечно, ее близость относительна. Галактика Андромеда находится от нас в 2,5 миллиона световых лет. Когда фотоны от ее звезд, попадающие в ваши глаза, начали свое путешествие, людей еще не существовало. Нам только предстояло появиться на Земле. Вы способны видеть невероятно далекий объект.
Ваши глаза – прекрасные детекторы света. Достаточно лишь нескольких фотонов, чтобы сигнал от них поступил в мозг. И все же зрение имеет ограничения. Вы можете увидеть лишь малую часть света, который посылает Андромеда.
У животных диапазон зрения несколько шире. Многие птицы, к примеру, имеют колбочки, чувствительные к ультрафиолетовым лучам. Это особенно помогает ястребам, кружащимся высоко в небе и выслеживающим мелких млекопитающих. Ястребы охотятся на мышей, полевок и землероек, окраска которых помогает им хорошо маскироваться в траве. Но эти мелкие грызуны часто оставляют на земле следы мочи, которые ярко светятся в ультрафиолетовом диапазоне. Поэтому ястреб выслеживает не мышей как таковых, а, скорее, следы их жизнедеятельности.
Читать дальше
Конец ознакомительного отрывка
Купить книгу