Разлив пива в стеклянную посуду имел еще один неожиданный побочный эффект. По данным британского правительства, ежегодно более пяти тысяч человек подвергаются нападениям преступников, вооруженных стаканами и бутылками, что обходится здравоохранению более чем в два миллиарда фунтов ежегодно. В пивных заведениях попробовали вводить пластик, такой же прозрачный и прочный, как стекло, но посетители его отвергли. Пить пиво из пластикового стаканчика совсем не то же самое, что из стеклянной кружки, и не только потому, что у пластика вкус другой, но и потому, что он хуже проводит тепло и поэтому теплее на ощупь, чем стекло, а это уменьшает удовольствие от распития ледяного пива. Пластик также гораздо мягче стекла, поэтому очень скоро стаканчики блекнут, покрываются царапинами и налетом. Не только пиво в них кажется менее прозрачным, но и сама посуда кажется менее чистой. Ведь прелесть яркого, сияющего стекла еще и в том, что оно всегда выглядит чистым, даже если на самом деле это не так. Мы все поддаемся обману, не желая лишний раз думать о том, что наш стакан побывал у кого-то во рту, возможно, всего лишь час назад. Твердый пластик, стойкий к царапинам, – одна из главных задач материаловедения. В самолетах, поездах и машинах могли бы появиться легкие окна, а в мобильных телефонах – легкие экраны, но сейчас это кажется недостижимым. Пока что найдено другое решение: не отказываться от стекла, но сделать его надежнее.
Такое стекло называется закаленным. Оно было изобретено в автомобильной индустрии, чтобы уменьшить травмы от осколков стекла при авариях. В научном смысле оно ведет свое происхождение от одной любопытной вещицы, придуманной в 1640 году, известной как капли принца Руперта. Это кусочки стекла в форме слезинок, которые выдерживают сильное давление на закругленном конце, но лопаются, стоит слегка повредить их «с хвоста». Сделать такие капли очень просто: нужно всего лишь бросить в воду кусочек расплавленного стекла. Резкое охлаждение приводит к механическому сжатию поверхностных слоев стекла, оставляя мало шанса царапинам, так как сжимающее напряжение все время стягивает их края. Закалка у стекла такая, что капля выдержит удар кувалдой, хоть в это и трудно поверить.
Однако, чтобы сохранить сжимающее напряжение на внешней поверхности стекла, законы физики требуют равного ему по силе обратного, растягивающего, напряжения внутри. Атомы в глубине капли напряжены до предела; их взаимное отталкивание так велико, что они в любой момент готовы взорваться. Если поверхностное сжатие хоть чуточку выйдет из равновесия – допустим, вы поцарапаете «хвост», – пойдет цепная реакция по всему стеклу: находящиеся под напряжением атомы тут же займут естественное положение, и капля рассыплется на мельчайшие осколки, достаточно острые, чтобы о них порезаться, но слишком крохотные, чтобы нанести серьезный вред. Чтобы лобовое стекло так же крошилось при ударе, ученым нужно было придумать способ охлаждения внешней поверхности со скоростью, достаточной для образования сжимающего напряжения, как в каплях принца Руперта. Новый материал спас множество жизней, потому что во время аварии неизменно рассыпался на миллионы осколков.
Со временем стекло стало еще более надежным. Лобовое стекло, в которое я врезался тогда в Испании, было безопасным стеклом последнего поколения, его называют многослойным. Хоть оно и разбилось вдребезги подобно каплям принца Руперта, ни одного осколка не выпало из него за все то время, что мы вместе с ним летели через капот машины и приземлялись на асфальт.
Это новейшее прочное стекло проложено слоем пластика – ламината, который склеивает осколки подобно клею. Пуленепробиваемое стекло, по сути, делается по той же технологии, но с несколькими слоями пластика внутри. Когда пуля разбивает внешний слой стекла, он поглощает часть энергии пули и затупляет ее кончик. Затем пуля проталкивает осколки сквозь слой пластика, вязкий словно патока, он распределяет воздействие удара на участок вокруг точки столкновения. Не успеет пуля пройти и эту преграду, как ее встречает очередной слой стекла, и процесс повторяется.
Чем больше слоев пластика и стекла, тем больше энергии может поглотить пуленепробиваемое стекло. Один слой ламината остановит пулю из пистолета девятого калибра, три слоя – пулю из «магнума» сорок четвертого калибра, а восемь слоев помешают автомату Калашникова убить вас. Конечно, от пуленепробиваемого лобового стекла мало проку, если через него нельзя ничего разглядеть, поэтому задача не столько в том, чтобы наращивать количество слоев, сколько в том, чтобы совместить коэффициенты преломления стекла и пластика (свет не должен слишком отклоняться по пути от слоя к слою).
Читать дальше
Конец ознакомительного отрывка
Купить книгу