"We have assumed, in our little calculation, that the entire contents of a polar hood turn to water; but in actual fact a considerable proportion of them must pass directly into vapour, omitting the intermediate stage. Even with us a large quantity of snow is removed aerially; and in the rare atmosphere of Mars this cause of waste must be especially effective. Thus the polar reservoirs are despoiled in the act of being opened. Further objections might be taken to Mr. Lowell's irrigation scheme, but enough has been said to show that it is hopelessly unworkable."
It will be seen that the writer of this article accepted the existence of water on Mars, on the testimony of Sir W. Huggins, which, in view of later observations, he has himself acknowledged to be valueless. Dr. Johnstone Stoney's proof of its absence, derived from the molecular theory of gases, had not then been made public.
Description of some of the Canals.
At the end of his volume Mr. Lowell gives a large chart of Mars on Mercator's projection, showing the canals and other features seen during the opposition of 1905. This contains many canals not shown on the map here reproduced (see frontispiece), and some of the differences between the two are very puzzling. Looking at our map, which shows the north-polar snow below, so that the south pole is out of the view at the top of the map, the central feature is the large spot Ascraeeus Lucus, from which ten canals diverge centrally, and four from the sides, forming wide double canals, fourteen in all. There is also a canal named Ulysses, which here passes far to the right of the spot, but in the large chart enters it centrally. Looking at our map we see, going downwards a little to the left, the canal Udon, which runs through a dark area quite to the outer margin. In the dark area, however, there is shown on the chart a spot Aspledon Lucus, where five canals meet, and if this is taken as a terminus the Udon canal is almost exactly 2000 miles long, and another on its right, Lapadon, is the same length, while Ich, running in a slightly curved line to a large spot (Lucus Castorius on the chart) is still longer. The Ulysses canal, which (on the chart) runs straight from the point of the Mare Sirenum to the Astraeeus Lucus is about 2200 miles long. Others however are even longer, and Mr. Lowell says: "With them 2000 miles is common; while many exceed 2500; and the Eumenides-Orcus is 3540 miles from the point where it leaves Lucus Phoeniceus to where it enters the Trivium Charontis." This last canal is barely visible on our map, its commencement being indicated by the word Eumenides.
The Trivium Charontis is situated just beyond the right-hand margin of our map. It is a triangular dark area, the sides about 200 miles long, and it is shown on the chart as being the centre from which radiate thirteen canals. Another centre is Aquae Calidae situated at the point of a dark area running obliquely from 55° to 35° N. latitude, and, as shown on a map of the opposite hemisphere to our map, has nearly twenty canals radiating from it in almost every direction. Here at all events there seems to be no special connection with the polar snow-caps, and the radiating lines seem to have no intelligent purpose whatever, but are such as might result from fractures in a glass globe produced by firing at it with very small shots one at a time. Taking the whole series of them, Mr. Lowell very justly compares them to "a network which triangulates the surface of the planet like a geodetic survey, into polygons of all shapes and sizes."
At the very lowest estimate the total length of the canals observed and mapped by Mr. Lowell must be over a hundred thousand miles, while he assures us that numbers of others have been seen over the whole surface, but so faintly or on such rare occasions as to elude all attempts to fix their position with certainty. But these, being of the same character and evidently forming part of the same system, must also be artificial, and thus we are led to a system of irrigation of almost unimaginable magnitude on a planet which has no mountains, no rivers, and no rain to support it; whose whole water-supply is derived from polar snows, the amount of which is ludicrously inadequate to need any such world-wide system; while the low atmospheric pressure would lead to rapid evaporation, thus greatly diminishing the small amount of moisture that is available. Everyone must, I think, agree with Miss Clerke, that, even admitting the assumption that the polar snows consist of frozen water, the excessively scanty amount of water thus obtained would render any scheme of world-wide distribution of it hopelessly unworkable.
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.
Mercury also seems to have a scanty atmosphere, but as its mass is only one-thirtieth that of the earth it can retain only the heavier gases, and its atmosphere may be dust-laden, as is that of Mars, according to Mr. Lowell. Its dusky markings, as seen by Schiaparelli, seem to be permanent, and they are also for considerable periods unchangeable in position, indicating that the planet keeps the same face towards the sun as does Venus. This was confirmed by Mr. Lowell in 1896. Its distance from us and unfavourable position for observation must prevent us from obtaining any detailed knowledge of its actual surface, though its low reflective power indicates that the surface may be really visible.
Man's Place in the Universe p. 267 (1903).
This is on the opposite side of Mars from that shown in the frontispiece.
In 1890 at Mount Wilson, California, Mr. W.H. Pickering's photographs of Mars on April 9th showed the southern polar cap of moderate dimensions, but with a large dim adjacent area. Twenty-four hours later a corresponding plate showed this same area brilliantly white; the result apparently of a great Martian snowfall. In 1882 the same observer witnessed the steady disappearance of 1,600,000 square miles of the southern snow-cap, an area nearly one-third of that hemisphere of the planet.
What the evaporation is likely to be in Mars may be estimated by the fact, stated by Professor J.W. Gregory in his recent volume on 'Australia' in Stanford's Compendium , that in North-West Victoria evaporation is at the rate of ten feet per annum, while in Central Australia it is very much more. The greatly diminished atmospheric pressure in Mars will probably more than balance the loss of sun-heat in producing rapid evaporation.
Areas on Mars so named.