Теперь мало кто из биохимиков и молекулярных биологов сомневается, что жизнь могла естественным образом возникнуть из неживого, хотя в деталях еще предстоит разобраться. Но когда мы все это обсуждали, все наши работы пронизывала общая мысль: должна ли жизнь, которая впервые сформировалась на Земле, иметь химию, какую она имеет, или есть много других, одинаково эффективных возможностей?
Эйнштейн однажды задал вопрос, который, по его словам, был тем, что он действительно хотел знать о природе. Должен признать, что это самый глубокий и фундаментальный вопрос, на который многие из нас хотели бы ответить. Он сформулировал его следующим образом: «Я хочу знать, был ли у Бога выбор при создании Вселенной».
Я комментирую это потому, что Бог Эйнштейна не был библейским Богом. Для Эйнштейна существование во Вселенной порядка приносило чувство такого глубокого удивления, что он ощущал к нему духовную привязанность и называл, побуждаемый Спинозой, прозвищем «Бог». В любом случае, то, что Эйнштейн действительно имел здесь в виду, был вопрос, который я только что описал в контексте нескольких различных примеров: являются ли законы природы уникальными? И уникальна ли Вселенная, в которой мы живем, возникшая вследствие этих законов? Если изменить один аспект, одну константу, одну силу, даже самую маленькую, не разрушится ли все здание? В биологическом смысле, является ли биология жизни уникальной? Уникальны ли мы во Вселенной? К обсуждению этого наиболее важного вопроса мы вернемся позже в этой книге.
Хотя такое обсуждение приведет нас к дальнейшему улучшению и обобщению понятий «ничто» и «нечто», я хочу вернуться к предпринятым промежуточным шагам по изложению довода о неизбежности создания чего-то.
Как я уже определил ранее, рассматриваемым «ничто», из которого возникло наше наблюдаемое «нечто», является «пустое пространство». Однако как только мы сделаем возможным слияние квантовой механики и общей теории относительности, мы можем расширить этот аргумент на случай, когда возникает само пространство.
Общая теория относительности, будучи теорией гравитации, является, по своей сути, теорией пространства и времени. Как я указывал в самом начале этой книги, это означает, что это была первая теория, которая могла рассматривать динамику не только объектов, движущихся в пространстве, но и то, как развивается само пространство.
Поэтому наличие квантовой теории гравитации означало бы, что правила квантовой механики будут применяться к свойствам пространства, а не только к свойствам объектов, существующих в пространстве, как в обычной квантовой механике.
Расширить квантовую механику, чтобы включить такую возможность, сложно, но математическое представление, разработанное Ричардом Фейнманом, которое привело к современному пониманию происхождения античастиц, хорошо подходит для выполнения этой задачи. Методы Фейнмана сосредотачиваются на ключевом факте, о котором я упоминал в начале этой главы: квантовомеханические системы изучают все возможные траектории, даже те, которые классически запрещены, по мере того как они эволюционируют во времени.
С целью их изучения Фейнман разработал «формулировку через интеграл по траекториям», чтобы делать прогнозы. В этом методе мы рассматриваем все возможные траектории между двумя точками, которыми может следовать частица. Потом мы назначаем вероятностную оценку для каждой траектории на основе четко определенных принципов квантовой механики, а затем суммируем по всем путям, чтобы определить окончательные (вероятностные) предсказания для движения частиц.
Стивен Хокинг был одним из первых ученых, в полной мере развивших эту идею до возможной квантовой механики пространства-времени (объединения нашего трехмерного пространства с одним измерением времени, чтобы сформировать четырехмерную единую пространственно-временную систему, как этого требует специальная теория относительности Эйнштейна). Достоинством методов
Фейнмана было то, что фокусировка на всех возможных путях означает, что результаты можно отобразить в зависимости от конкретных пространственных и временных меток, относящихся к каждой точке на каждом пути. Поскольку теория относительности говорит нам, что различные наблюдатели, движущиеся друг относительно друга, будут измерять расстояние и время по-разному, и поэтому присваивать различные значения каждой точке в пространстве и времени, математический подход, независимый от различных меток, которые различные наблюдатели могут назначить каждой точке в пространстве и времени, особенно полезен.
Читать дальше
Конец ознакомительного отрывка
Купить книгу