Определенный тип взорвавшейся звезды под названием сверхновая типа Ia недавно наглядно продемонстрировал зависимость между яркостью и долговечностью. Измерение, как долго данная сверхновая типа Ia остается яркой, требовало, впервые, чтобы учитывались эффекты замедления времени из-за расширения Вселенной, что подразумевает, что измеренное время жизни такой сверхновой на самом деле больше, чем ее реальное время жизни в ее покоящейся системе координат. Тем не менее, мы могли бы вывести абсолютную яркость, измерить ее видимую яркость с помощью телескопов и, в конечном счете, определить расстояние до галактики, в которой сверхновая взорвалась. Измерение красного смещения галактики в то же время позволило определить ее скорость. Объединение этих двух приемов позволяет нам измерить, с возрастающей точностью, скорость расширения Вселенной.
Из-за того, что сверхновые настолько яркие, они обеспечивают не только отличный инструмент для измерения постоянной Хаббла, но также позволяют наблюдателям взглянуть назад во время, представляющее собой значительную часть общего возраста Вселенной.
Это дало новую и захватывающую возможность, которую наблюдатели рассматривали как гораздо более захватывающий источник сведений: измерить, как постоянная Хаббла меняется с течением космического времени.
Измерить, как меняется постоянная, звучит как оксюморон, и так бы оно и было, если бы не факт, что мы, люди, живем такую короткую жизнь, по крайней мере, в космическом масштабе. В человеческом масштабе времени скорость расширения Вселенной действительно постоянна. Однако, как я только что описал, скорость расширения Вселенной будет меняться с течением космического времени из-за воздействия гравитации.
Астрономы полагали, что если бы они могли измерить скорость и расстояние до сверхновых, расположенных на большом расстоянии — через пространства видимой Вселенной — то они могли бы измерить скорость, с которой замедлялось расширение Вселенной (так как все полагали, что Вселенная вела себя разумно, и преобладающая гравитационная сила во Вселенной была притягивающей). В свою очередь они надеялись определить, была ли Вселенная открытой, закрытой или плоской, так как скорость замедления в зависимости от времени отличается для каждой геометрии.
В 1996 году я провел шесть недель, посещая лабораторию Лоуренса Беркли, давая там лекции по космологии и обсуждая различные научные проекты с моими коллегами. Я выступил с докладом о нашем заявлении, что пустое пространство может иметь энергию, а потом Сол Перлмуттер, молодой физик, который работал над выявлением далеких сверхновых, подошел ко мне и сказал: «Мы докажем, что вы неправы!»
Сол имел в виду следующий аспект нашего предположения плоской вселенной, 70 процентов энергии, которые должны содержаться в пустом пространстве. Напомним, что такая энергия произвела бы космологическую константу, вызвав отталкивающую силу, которая тогда существовала бы всюду по всему пространству, и она повлияла бы на расширение вселенной, заставляя её расширение ускорятся, а не замедляться.
Как я описал, если бы расширение вселенной ускорялось за космическое время, то вселенная была бы более старой сегодня, чем в ином случае, если бы мы сделали вывод, что расширение замедлялось. Это означало бы, что взгляд назад во времени на галактики с некоторым красным смещением будет более продолжительным, чем это было бы в противном случае. В свою очередь, если бы они разлетались от нас в течение более длительного времени, это означало бы, что свет от них начал исходить гораздо дальше. Сверхновые в галактиках с некоторым измеренным красным смещением тогда казались бы нам более тусклыми, чем, если бы свет возник ближе. Схематически, если измерить скорость в зависимости от расстояния, наклон кривой для близких галактик позволит нам определить скорость расширения сегодня, а затем то, наклоняется кривая вверх или вниз для далеких сверхновых сказало бы нам, ускоряется Вселенная или замедляется в течение космического времени.

Через два года после нашей встречи Сол и его сотрудники, члены международной команды под названием «Космологический проект сверхновых», опубликовали статью, основанную на первых, предварительных данных, которые действительно наводили на мысль, что мы были неправы. (На самом деле, они не утверждали, что мы с Тернером были неправы, так как они, наряду с большинством других наблюдателей, действительно не слишком доверяли нашему предположению.) Их данные свидетельствовали, что график зависимости расстояния от красного смещения изогнут вниз, и таким образом предельный уровень энергии пустого пространства должен был быть значительно ниже, чем было необходимо, чтобы внести существенный вклад в полную энергию сегодня.
Читать дальше
Конец ознакомительного отрывка
Купить книгу