В апреле 2011 года журнал Nature опубликовал статью, содержащую ссылку на замечательный фильм, показывающий постепенное формирование глазоподобной структуры из стволовых клеток. В фильме показан не процесс формирования глаз у живого эмбриона, а то, как глаз – в буквальном смысле слова на наших глазах – вырастает вне живого организма, в пробирке. Значение этого захватывающего эксперимента трудно переоценить, поскольку он приоткрыл завесу тайны над тем, как происходит развитие глаза, и показал, что строительные инструкции содержатся внутри самих дифференцирующихся клеток: другими словами, глаз является самоорганизующейся структурой – он способен построить сам себя самостоятельно, без какого-либо вмешательства извне. Этот эксперимент воодушевил мировое сообщество исследователей-офтальмологов, которые пытаются использовать принципы биологии развития для регенерации больных глаз, поскольку показал, что они идут по правильному пути.
Мотоцугу Эираку, ныне покойный Ёсики Сасаи и их коллеги из научно-исследовательского института RIKEN в Японии поместили эмбриональные стволовые клетки мышей в пробирку с питательной средой и некоторым количеством гелеобразного субстрата под названием матригель, способного играть роль каркаса для растущей ткани. Также они ввели несколько доз белка Nodal, который, как известно, запускает дифференциацию стволовых клеток. Через шесть дней после начала эксперимента сформировалось несколько полых сфер, быстро превратившихся в полусферические мешочки или пузырьки. Чтобы наблюдать за происходящим, ученые предварительно ввели в стволовые клетки ген зеленого флуоресцентного белка (ЗФБ). Изначально ген ЗФБ был выделен у медуз и в настоящее время широко используется в качестве маркера для визуализации развития тканей. Когда стволовые клетки в пробирке начали дифференцироваться, они включили ген ЗФБ, благодаря чему развивающаяся структура светилась призрачным зеленым светом. Другими словами, исследователи создали свою собственную натуральную видеографику! Без ЗФБ пузырьки развивались бы незаметно, пока вокруг них не образовалось бы тканевая оболочка.
Между восьмым и десятым днем пузырьки резко изменили форму – они сложились внутрь, сформировав чаши точно такого же размера, как глазной бокал у зародышей мышей. Клетки наружной стенки глазного бокала начали продуцировать белковые маркеры, которые обычно можно увидеть в развивающемся пигментном эпителии сетчатки, а клетки внутреннего слоя начали экспрессировать маркеры, характерные для нейронов сетчатки. Раньше считалось, что для того, чтобы запустить процесс формирования глазного бокала, сначала из ткани эктодермы должен образоваться хрусталик, однако в эксперименте Эираку и Сасаи глазной бокал сформировался совершенно самостоятельно, без какого-либо влияния извне. Следующим шагом исследователи осторожно вырезали несколько таких пузырьков и вырастили их отдельно от первоначального агрегата стволовых клеток. Удивительно, но через четырнадцать дней эта «эмбриональная сетчатка» принялась дифференцировать все известные типы клеток: фоторецепторы, ганглиозные клетки, биполярные клетки, горизонтальные клетки, амакринные клетки и глиальные клетки Мюллера. Кроме того, эти различные типы клеток размещались в правильном анатомическом порядке, как это происходит в развивающемся глазе нормального зародыша: биполярные клетки располагались поверх фоторецепторных, а над ними, во внутреннем слое, – ганглиозные и амакринные клетки. Таким образом, исследователям удалось вырастить глазной бокал и сетчатку, или, точнее говоря, эти структуры вырастили сами себя – это был глаз «сделай себя сам». «Программа этого сложного морфогенеза, – заключают Эираку и Сасаи, – имманентно заложена в клетках и запускает процесс динамического самоформирования и самоинформирования под влиянием последовательной комбинации локальных правил и внутренних сил в эпителии». Таким образом, японские ученые заглянули в ближайшее будущее офтальмологии, когда регенеративная технология «сделай себя сам» позволит выращивать настоящие многослойные трехмерные нейронные сетчатки на заказ, в виде целых листов.
Разумеется, как справедливо может заметить скептически настроенный читатель, японские ученые вырастили не полноценный глаз, а всего лишь глазной бокал и сетчатку. А как насчет, скажем, хрусталика? К счастью, Андреа Стрейт из Королевского колледжа в Лондоне показала, каким образом развивающийся глазной бокал индуцирует образование хрусталика в нужном месте. Наружный слой клеток любого эмбриона – эктодерма – обладает имманентной способностью формировать хрусталик в любой части своей поверхности. Например, в ходе экспериментов исследователям удалось стимулировать образование хрусталиков по всей поверхности тела зародышей лягушки и насекомых. Стрейт показала, что в норме мигрирующая популяция клеток нервного гребня, которая находится между развивающейся центральной нервной системой и эктодермой, не дает эктодерме формировать хрусталики. Эти клетки активируют клеточные сигнальные пути, которые подавляют экспрессию ключевого гена Pax6, отвечающего за развитие глаз. Однако, когда глазной бокал формируется и поднимается вверх, прикасаясь к эктодерме, он образует санитарный кордон, изолирующий локальный участок эктодермы от клеток нервного гребня. Ген Рах6 перестает ингибироваться, и на этом месте – именно там, где нужно, – формируется хрусталик.
Читать дальше
Конец ознакомительного отрывка
Купить книгу