Конечной точкой модели был глаз водных животных, очень похожий на глаз кальмара или осьминога. Исследователи подсчитали, сколько этапов развития, каждый из которых приводил к однопроцентному улучшению пространственного разрешения, вмещается между начальной и конечной точкой, и установили, что общее количество таких этапов составляет всего 1829. Сколько времени могло потребоваться эволюции, чтобы пройти эти 1829 этапов в реальности? Исследователи заложили в модель самые консервативные параметры наследования, интенсивности отбора и морфологической вариабельности каждого компонента глаза и предположили, что время жизни поколения составляет один год (средний показатель для водных животных малой и средней величины). Модель показала, что для развития глаза камерного типа из плоского пятна светочувствительных клеток понадобилось всего 360 тысяч лет – сущий миг для планеты. Самые древние из найденных на сегодняшний день ископаемых останков глаза датируются началом кембрийского периода. С тех пор прошло 550 миллионов лет – т. е. времени было достаточно, чтобы глаз успел совершить вышеописанный эволюционный процесс более 1500 раз!
Разумеется, это вовсе не означает, что за время эволюции жизни на Земле глаз заново изобретался 1500 раз. Но это показывает, что оптически совершенный глаз мог развиться путем естественного отбора за удивительно короткий период по сравнению с тем гигантским интервалом геологического времени, на протяжении которого существуют органы зрения. Более того, модель Нильссона и Пелгер хорошо объясняет огромное разнообразие структур глаза, обнаруживаемое в природе: «У существующих ныне животных можно найти структуры глаза, соответствующие каждому из этапов в смоделированной нами последовательности. Например, сравнительная анатомия показывает нам, что моллюски и кольчатые черви демонстрируют всю серию конструкций глаза – от простых эпидермальных скоплений фоторецепторов до крупных и хорошо развитых глаз камерного типа».
Так сколько же раз органы зрения могли проходить независимый эволюционный процесс за весь период существования жизни на Земле? Никто точно не знает. Великий биолог-эволюционист Эрнст Майр вместе с Лютфридом фон Сальвини-Плавеном предположили, что, учитывая огромное анатомическое разнообразие органов зрения и находящихся в них фоторецепторов, они могли эволюционировать независимо друг от друга от сорока до шестидесяти пяти раз. Однако Вальтер Геринг из Базельского университета в Швейцарии, изучая эволюционную историю генов, отвечающих за формирование глаз у разных животных, пришел к совершенно другому выводу.
Геринг сосредоточился на одном древнем гене под названием Рах6, который предположительно находится на вершине всей иерархии генов, участвующих в формировании органов зрения, начиная со времен древнейших предков всех позвоночных и беспозвоночных животных, которые все вместе называются билатериями. Билатерии – это первые примитивные животные, имевшие двустороннюю симметрию. На самом деле близкородственные варианты гена Рах6 были найдены даже у видов, предшествующих билатериям, таких как кубовые медузы, губки и полипы гидра, которых школьники обычно рассматривают под микроскопом на уроках биологии.
Геринг предположил, что дарвиновский прототип глаза, состоящий всего из одной светочувствительной и одной пигментной клетки, мог контролироваться геном Рах6 и что все органы зрения в животном мире развивались путем постепенного ступенчатого добавления к нему вспомогательных генов, в результате чего образовалась сложная иерархия с Рах6 на ее вершине. Из модели Геринга следует неизбежный и ошеломляющий вывод: органы зрения в животном мире эволюционировали лишь единожды, начав этот процесс примерно 700 миллионов лет назад, и все глаза, которые мы видим сегодня или которые когда-либо существовали, представляют собой результат ступенчатого эволюционного увеличения сложности путем последовательного добавления генов, приведшего к тому, что сегодня сложный человеческий глаз или глаз насекомого контролируется семейством из примерно двух тысяч генов.
На мысль о том, что ген Рах6 может играть главенствующую роль в развитии органов зрения, Геринга навели работы ученых, которые показали, что различные дефекты этого гена приводят к появлению «безглазых» мутаций у плодовых мушек дрозофил, формированию «маленьких глаз» у мышей и наследственному заболеванию, известному как аниридия, у человеческих эмбрионов (в этом случае обычно происходит самопроизвольный выкидыш, поскольку у эмбрионов с дефектным геном Pax6 не только не формируются глаза и уши, но и серьезно нарушается развитие головного мозга). Исследователи осуществили ряд оригинальных экспериментов: например, когда зародышам дрозофил вводился мышиный вариант гена Pax6, у них формировались дополнительные эктопические (неправильно расположенные) фасеточные глаза в самых разных местах, включая ноги, усики и крылья. Это доказало, что Рах6 отвечает за формирование органов зрения, но не за их тип и расположение. Эксперименты показали, что Рах6 не только запускает процесс формирования органов зрения, но и инициирует дальнейшую дифференциацию типов клеток в глазу. Как указывает Геринг: «Эти эксперименты позволяют сделать вывод, что Рах6 является главным контролирующим геном – геном-господином – находящимся на вершине каскада генов, отвечающих за морфогенез глаз, и что он может играть роль главного контролера как у насекомых, так и у млекопитающих».
Читать дальше
Конец ознакомительного отрывка
Купить книгу