Педро Домингос - Верховный алгоритм - как машинное обучение изменит наш мир

Здесь есть возможность читать онлайн «Педро Домингос - Верховный алгоритм - как машинное обучение изменит наш мир» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2016, ISBN: 2016, Издательство: Литагент МИФ без БК, Жанр: foreign_edu, Технические науки, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Верховный алгоритм: как машинное обучение изменит наш мир: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Верховный алгоритм: как машинное обучение изменит наш мир»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Машинное обучение преображает науку, технологию, бизнес и позволяет глубже узнать природу и человеческое поведение. Программирующие сами себя компьютеры – одна из самых важных современных технологий, и она же – одна из самых таинственных.
Ученый-практик Педро Домингос приоткрывает завесу и впервые доступно рассказывает о машинном обучении и о поиске универсального обучающегося алгоритма, который сможет выуживать любые знания из данных и решать любые задачи. Чтобы заглянуть в будущее и узнать, как машинное обучение изменит наш мир, не нужно специального технического образования – достаточно прочитать эту книгу.
На русском языке публикуется впервые.

Верховный алгоритм: как машинное обучение изменит наш мир — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Верховный алгоритм: как машинное обучение изменит наш мир», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Чтобы развиваться, любая область науки нуждается в данных, соизмеримых по сложности с явлениями, которые она изучает. Именно поэтому физика первой пошла вперед: записей Тихо Браге о положении планет и наблюдений Галилея за маятником и наклонными плоскостями оказалось достаточно, чтобы сформулировать законы Ньютона. По той же причине молекулярная биология обогнала более старую нейробиологию: ДНК-микрочипы и высокоэффективное секвенирование дают столько данных, сколько нейробиологам и не снилось. Социальные науки находятся в этом отношении в невыгодном положении: с выборкой всего лишь в сотню человек по десятку измерений на каждого смоделировать получается лишь очень узкие явления. Но даже такие небольшие феномены не существуют в изоляции: на них влияют мириады факторов, а это значит, что ученые очень далеки от того, чтобы их понять.

Хорошая новость: сегодня даже науки, некогда оперировавшие небольшими объемами информации, получили приток данных. Вместо того чтобы платить 50 студентам, которые будут клевать носом в лаборатории психолога, можно получить сколько угодно испытуемых, дав задание краудсорсинговой площадке Amazon Mechanical Turk (к тому же выборка окажется более разнообразной). Сейчас уже не все помнят, как немногим более десятилетия назад социологи, изучавшие социальные сети, жаловались, что не могут найти такую сеть, в которой было бы больше нескольких сотен участников. Теперь в их распоряжении весь Facebook, где больше миллиарда пользователей рассказывают о своей жизни во всех подробностях – чем не прямая трансляция общественной жизни на планете Земля? Коннектомика [10] Область исследований, включающая в себя картографирование и анализ архитектуры нейрональных связей. и функциональная магнитно-резонансная томография распахнули перед нейробиологами окно, через которое прекрасно виден головной мозг. В молекулярной биологии экспоненциально растут базы данных генов и белков. Даже «старые» дисциплины, например физика и астрономия, не стоят на месте благодаря потокам данных, льющимся из ускорителей частиц и цифрового исследования неба.

Однако от больших данных нет пользы, если их нельзя превратить в знание, и в мире слишком мало ученых, чтобы справиться с этой задачей. В свое время Эдвин Хаббл [11] Эдвин Пауэлл Хаббл (Edwin Powell Hubble, 1889–1953) – один из наиболее влиятельных астрономов и космологов XX века, внесший решающий вклад в понимание структуры космоса. Член Национальной академии наук в Вашингтоне с 1927 года. открывал новые галактики, скрупулезно изучая фотографические пластинки, но можно ручаться, что таким способом не получилось бы найти полмиллиарда небесных тел, которые нам подарил проект Digital Sky Survey, – это было бы подобно ручному подсчету песчинок на пляже. Конечно, можно вручную написать правила, чтобы отличить галактики от звезд и шумов (например, птиц, самолетов или пролетающего мимо Супермена), но они будут не очень точными. Поэтому в проекте SKICAT, посвященном анализу и каталогизации изображений неба, был применен обучающийся алгоритм. Получив пластинки, где объектам уже были присвоены правильные категории, он разобрался, что характеризует каждую из них, а затем применил результаты ко всем необозначенным пластинкам. Эффективность превзошла все ожидания: алгоритм сумел классифицировать объекты настолько слабые, что человек не смог бы их выявить, и таких оказалось больше всего.

Благодаря большим данным и машинному обучению можно понять намного более сложные феномены, чем до появления этих факторов. В большинстве дисциплин ученые традиционно пользовались только очень скромными моделями, например линейной регрессией, где кривая, подобранная к данным, – всегда прямая линия. К сожалению (а может, и к счастью, потому что иначе жизнь была бы очень скучной – вообще говоря, никакой жизни бы и не было), большинство феноменов в мире нелинейны, и машинное обучение открывает перед нами огромный мир нелинейных моделей: это все равно что включить свет в комнате, которую до того освещала лишь Луна.

В биологии алгоритмы машинного обучения разбираются, где в молекуле ДНК расположены гены, какие фрагменты РНК вырезают при сплайсинге [12] Процесс вырезания определенных нуклеотидных последовательностей из молекул РНК и соединения последовательностей, сохраняющихся в «зрелой» молекуле, в ходе процессинга РНК. перед синтезом белка, как белки принимают характерную для них форму и как заболевания влияют на экспрессию разных генов. Вместо того чтобы тестировать в лаборатории тысячи новых лекарств, обучающийся алгоритм спрогнозирует, будут ли они эффективны, и допустит до этапа тестирования только самые перспективные. Алгоритмы будут отсеивать молекулы, которые, скорее всего, вызовут неприятные побочные эффекты, например рак. Это позволит избежать дорогих ошибок, к примеру, когда лекарство запрещают только после начала испытаний на человеке.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Верховный алгоритм: как машинное обучение изменит наш мир»

Представляем Вашему вниманию похожие книги на «Верховный алгоритм: как машинное обучение изменит наш мир» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


libcat.ru: книга без обложки
Педро Домингос
Отзывы о книге «Верховный алгоритм: как машинное обучение изменит наш мир»

Обсуждение, отзывы о книге «Верховный алгоритм: как машинное обучение изменит наш мир» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x