Разумеется, прежде всего необходимо решить проблему энергообеспечения устройства. На первый взгляд задача кажется сложной, поскольку объект способен передвигаться, но в действительности существует много способов передачи энергии. Например, можно использовать принципы электромагнитной индукции или наложить на среду медленно изменяющиеся электрические и магнитные поля, создающие в объекте внутренние электромагнитные силы. Другой вполне реальный метод состоит в использовании различных химических веществ, вводимых в раствор, когда в среде будут происходить химические реакции, создающиеся источником питания устройства, и т. д. Кроме того, существует достаточно простой метод передачи энергии электромагнитным излучением, когда среда и устройство освещаются светом или излучением любой частоты, способной проникать через воду.
Та же система может одновременно использоваться для управления роботом. Действительно, используя какой-то источник питания (например, индукционный), его можно легко применять в качестве системы управления, то есть применять для передачи соответствующих команд или сигналов о состоянии самого робота. Я говорю не о сложных сетях связи или координации (типа соединения через спутник и т. п.), а об организации простейшего управления на очень небольших расстояниях с очень малыми объектами. Проблема сводится лишь к подаче сигналов и приему ответов на них.
Интересно и поучительно, что настоящие проблемы в создании микроустройств связаны с теми действиями, которые представляются очевидными и забавными. Например, каким образом может вообще передвигаться в воде микроробот? Конечно, мы можем снабдить его, например, микроскопическим вращающимся хвостиком или щупальцами, но стоит вспомнить, что для объекта или существа размером в несколько микрон вода представляет собой (с учетом пропорций тела) чрезвычайно вязкую жидкость. Представьте, что вам приходится плыть в бассейне, заполненном густым медом! Единственным разумным выходом представляется использование изогнутых, S-образных плавников, которые могли бы «ввинчиваться» в вязкую среду и обеспечивать продвижение. Такое движение требует больших усилий, так что следует особо позаботиться об источнике энергии. Кстати, каким механизмом следует воспользоваться при использовании сложных плавников, типа винта?
Существует классический вопрос, который постоянно задают друг другу биологи и физики: почему природа никогда не использует в биологических структурах колесо? Ответ обычно сводится к тому, что колесо представляет собой изолированную структуру, которую организму трудно «обслуживать» (смазывать, снабжать кровью, наращивать и т. п.). Поэтому мы не будем пока вспоминать о колесе, а начнем конструировать наши микророботы из проверенных природой и временем деталей. Вспомним, что бактерии двигаются посредством щупальцев, называемых флагеллами (отростки, имеющие форму штопора), и закрученных ворсинок, позволяющих им перемещаться в вязких средах. Именно флагелла в биологии простейших обладает действительно необычной, отдельной, подвижной (ее можно даже назвать съемной!) деталью. Я говорю о том, что на конце флагеллы обычно располагается некое подобие диска, покрытого белками и ферментами. На этой поверхности могут происходить сложные ферментные реакции с молекулой АТФ (адезинтрифосфорная кислота, обычный источник энергии в биологических структурах), в результате чего диск прокручивается на некоторый угол, позволяя осуществлять вращательные движения отдельными щупальцами или ворсинками. (Фейнман демонстрирует руками молекулярные конформации, приводящие к вращению.) После окончания реакции молекула АТФ отделяется и движение прекращается, но затем к диску присоединяется другая молекула АТФ и т. д., так что вся структура, напоминающая известный в механике храповик, постоянно вращается и заставляет (через трубку) вращаться спиральное щупальце, флагеллу микроорганизма.
Более двадцати лет назад, когда я прочел лекцию, мой друг Ал Хибс, представивший меня аудитории сегодня, первым предложил использовать микроустройства в медицинских целях. Сейчас, когда я заговариваю об этом, мне постоянно отвечают: «Прекрасно! Давайте сделаем устройство размером с клетку и научимся применять его. Если у вас проблемы с печенью – просто проглотите немного клеток печени и постарайтесь выздороветь!» На самом деле в те годы я, естественно, говорил о гораздо более крупных устройствах, а Хибс первым предложил создать микроскопического «хирурга», то есть снабженную инструментами и инструкциями лечебную машину. Ее можно ввести в организм больного и применять для самых различных целей (например, она может просто разыскивать в ваших артериях жировые бляшки и уничтожать их!).
Читать дальше
Конец ознакомительного отрывка
Купить книгу