Когда Гильберт сформулировал свои проблемы, некоторые математики задумывались над тем, существенна ли для доказательства конечность (с математической точки зрения). Ведь, в конце концов, математически бесконечность имеет смысл, так почему бы не быть бесконечным доказательствам? Гильберт, хотя и яро выступал в защиту теории Кантора, считал эту идею смехотворной. И таким образом и он, и его критики ошибались, как ошибался Зенон: все они предполагали, что некоторый класс абстрактных сущностей может что-то доказывать и что с помощью математических рассуждений можно определить, что это за класс.
Но если бы законы физики на самом деле были не такими, какими мы их сейчас считаем, то это могло бы сказаться и на множестве математических истин, которые мы тогда смогли бы доказать, и на операциях, доступных для использования в доказательстве. Законы физики в том виде, в котором они нам известны, придают особый статус таким операциям, как не, и и или , проводимым над отдельными битами информации (двоичными знаками или логическими значениями истина / ложь ). Поэтому эти операции кажутся нам естественными, элементарными и конечными, так же, как и биты. При таких законах физики, как, скажем, в отеле «Бесконечность», существовали бы дополнительные привилегированные операции, действующие над бесконечными множествами битов. При каких-нибудь еще законах физики операции не, и и или были бы невычислимы, а некоторые из наших невычислимых функций казались бы естественными, элементарными и конечными.
Это подводит меня к еще одному противопоставлению, которое зависит от законов физики: простое и сложное . Мозг – это физический объект. Мысли – это вычисления таких типов, которые допускаются законами физики. Некоторые объяснения схватываются легко и быстро, как, например: «Если Сократ был мужчиной и Платон был мужчиной, то они оба были мужчинами». Оно простое, потому что выражено коротким предложением и опирается на свойства элементарной операции (а именно и ). Есть объяснения, суть которых принципиально трудно ухватить, потому что даже в самой короткой своей форме они длинные и зависят от множества таких операций. Но будет ли объяснение длинным или коротким, потребуется ли для его составления много или мало элементарных операций – все это полностью определяется законами физики, при которых оно формулируется и понимается.
Оказывается, в квантовых вычислениях, которые сегодня считаются полностью универсальной формой вычислений, точно такой же набор вычислимых функций, что и в классических вычислениях Тьюринга. Но квантовые вычисления находят лазейку в классическом понятии «простой» или «элементарной» операции. За счет этого упрощаются некоторые интуитивно очень сложные вещи. Более того, понятие кубита (квантового бита), элементарного носителя информации в квантовых вычислениях, довольно трудно объяснить без использования квантовой терминологии. Зато бит представляется весьма сложным объектом с точки зрения квантовой физики.
Раз так, говорят некоторые, квантовые вычисления – не «настоящие» вычисления, а просто физика и техника. Они считают, что логические возможности, связанные с экзотическими законами физики, допускающими экзотические формы вычислений, не решают вопрос о том, что же такое доказательство «на самом деле». Свои возражения они высказывают примерно так: действительно, при подходящих законах физики мы смогли бы вычислить функции, не вычислимые по Тьюрингу, но это были бы не вычисления . Мы смогли бы установить истинность или ложность неразрешимых по Тьюрингу предложений, но это «установление» не было бы доказательством , потому что тогда наше знание о том, является ли предложение истинным или ложным, всегда зависело бы от наших знаний о том, что представляют собой законы физики. Если бы однажды мы обнаружили, что на самом деле законы физики другие, нам бы, возможно, пришлось пересмотреть и само доказательство и его вывод. Поэтому оно не было бы настоящим: настоящее доказательство не зависит от физики.
И снова мы видим то же самое заблуждение (а также своего рода джастификационизм, гонящийся за авторитетами). Наше знание о том, истинно или ложно высказывание, всегда зависит от знания о том, как ведут себя физические объекты. Если бы мы изменили свой взгляд на то, что делает компьютер или мозг, – например, решили бы, что наша собственная память ошибается в том, какие шаги в доказательстве мы проверили, – то нам пришлось бы изменить свое мнение о том, доказали ли мы что-то или нет. И так же было бы в том случае, если бы мы изменили мнение о том, как согласно законам физики должен работать компьютер.
Читать дальше
Конец ознакомительного отрывка
Купить книгу