Совершенство 28 значительно выше, чем совершенство 6 с позиции космической истинности, но следует при этом кое-что учитывать. Неделя состоит из 7 дней, 14 – две недели, а 28 – лунный месяц, 1 и 2 – мужчина и женщина или Бог и женщина, 4 – справедливость, а 7 – «чистое число», обозначенное так потому, что 7 не создает чисел внутри декад ни путем умножения, ни путем деления, являясь суммой 1, 2 и 4. И так далее. Почти что «сущее»: от человека до луны справедливо (четверливо) одно совершенство.
В своем обзоре древней нумерологии Аристотель заметил, что «справедливость стала одной комбинацией чисел, образованность и мудрость – другой, возможность – третьей и т. д.».
Мы видели, как число 4 означает справедливость. Было бы интересно взглянуть на понятия «мнение» и «знание». Хотя Аристотель специально не упоминает их, они сродни абстракциям в его изложении. Многое из того, о чем Платон и Сократ (говорящий то, что Платон вложил в его уста) говорили по поводу мнения и знания, было позаимствовано у первых нумерологов.
Наше знакомство с лабиринтом философской арифметики началось с двойной двери Ограниченного и Безграничного – тех мистических абстракций, которым суждено было стать альфой и омегой метафизики от Платона до Гегеля и математики от Пифагора до Кантора, жившего в 1845–1918 годах основателя современной теории математической бесконечности.
Нечетные числа в пифагорейской нумерологии ограничены, конечны и детерминированы, даже числа, не подпадающие под эти мужские качества решимости. Значения технических терминов в данной работе отличны от тех значений, которые употребимы в наши дни. Так, «конечный» означает имеющий границы, или завершение, а «бесконечный» означает неограниченный, незавершенный. И «конечный» и «бесконечный» встречаются в современной математике с такими же дефинициями, но они не соответствуют этим терминам в пифагорейской нумерологии и даже близко не напоминают вложенный в них смысл.
В пифагорейской попытке дать рациональное знание «конечность» нечетных чисел и «бесконечность» четных чисел отражают два элементарных понятия, тривиальные для нас. Нечетное число 5, например, может быть представлено в виде суммы двух равных чисел и единицы, а единица может быть расположена в центре равенства: 5 = 2 + 1 + 2. То же самое справедливо для 7 = 3 + 1 + 3, при этом общее нечетное число можно записать как n + 1 + n. Созидательная Единица, 1, «ставит рубеж», или «ограничивает» два равных числа. Аналогичное разделение мужских чисел женским числом 2 невозможно, поскольку нечетное число, деленное на 2, дает остаток ( 1/ 2), не являющийся целым числом. Следовательно, с точки зрения нумерологии женское число может разделить два мужских, но никогда одно.
Четное число, наоборот, не ограничено в своей внутренней структуре божественно созидательной Единицей. 4 = 2 + 2; 6 = 3 + 3;…2n = n + n. Следовательно, женские числа могут быть разделены наименьшим из них (2) на 2 целых числа. Возможная скрытая особенность состоит в применении «ограниченного» и «безграничного», которые будут рассмотрены в следующем разделе, где будет показано, что «линия» есть понятие, «ограниченное» своими концами, которыми выступают точки, а точка есть 1.
Из всего сказанного напрашивается вывод, что ограниченные нечетные числа пригодны для определения «постоянного» и «знаний», в то время как неограниченные четные числа могут выражать себя только через «непостоянное мнение». В подробности доказательства лучше не вдаваться.
Далеко не все в нумерологии «ограниченного» столь наивно, как в приведенном примере. Если «все сущее есть число», как утверждал Пифагор, должна быть возможность доказать, что весь космос есть число. Пифагорейцы довели это доказательство до конца в наиболее гениальной форме применения своей теории ограниченного. Их решение проблемы пространства стало ранней попыткой дать последовательный разбор размерности. Что означают слова: конкретное пространство имеет один размер, или два, или три? Удовлетворительный ответ, пригодный для любого пространства (ограниченного или безграничного) числа размерностей, был найден только в 1920-х годах. Хотя пифагорейское решение проблемы пространства давным-давно исчезло из разумного восприятия математиков, Пифагор и его ученики заслуживают признания за то, что занялись этой гениальной проблемой. Не искажая значения слова слишком вольно, беспристрастный критик может заявить, что даже при полной ошибочности их решения оно было рационально. То решение оказалось важным шагом для определения четырех материальных элементов с числами и геометрическими фигурами. Перейдем к нумерологическому доказательству, что космос есть число.
Читать дальше
Конец ознакомительного отрывка
Купить книгу