Эрик Белл - Магия чисел. Математическая мысль от Пифагора до наших дней

Здесь есть возможность читать онлайн «Эрик Белл - Магия чисел. Математическая мысль от Пифагора до наших дней» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2014, ISBN: 2014, Издательство: Array Литагент «Центрполиграф», Жанр: foreign_edu, Математика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Магия чисел. Математическая мысль от Пифагора до наших дней: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Магия чисел. Математическая мысль от Пифагора до наших дней»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Американский математик, исследователь в области теории чисел Эрик Т. Белл посвятил свою книгу истории происхождения математической мысли и разработки численной теории с момента ее зарождения в древности до современной эпохи. Обоснованно и убедительно автор демонстрирует влияние, которое оказала «магия чисел» на развитие религии, философии, науки и математики. Э.Т. Белл рассматривает процесс превращения числа из инструмента счета в объект культуры, сформировавшийся в VI веке до н. э. в школе древнегреческого философа, мистика, физика-экспериментатора и математика Пифагора – главного героя его исследования. Основополагающим моментом учения великого ученого древности стала доктрина о том, что «все сущее есть число». Доктор Белл изучил развитие этой доктрины: ее упадок в XVII веке и блистательное возрождение в современной физике. Автор также представил и проанализировал труды таких гигантов математики, как Галилей, Джордано Бруно, Ньютон.

Магия чисел. Математическая мысль от Пифагора до наших дней — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Магия чисел. Математическая мысль от Пифагора до наших дней», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Было бы справедливо послушать самого Канта, прежде чем переходить к опровержениям. Достаточно и нескольких выдержек. Он начал с объяснения: «Я вспоминаю все доклады, где нет ни слова объяснения восприятию понятия «чистая». Чистая форма всех чувственных интуиций, та форма, в которой просматриваются несколько элементов этого феномена, выстроенных в определенном порядке, априори должна быть найдена в разуме. И эта чистая форма чувственности может быть названа чистой интуицией». После ряда дальнейших толкований определений Кант декларирует: «В ходе данного исследования станет ясно, что существуют две чистые формы чувственной интуиции как принципов априорного знания, Пространство и Время. Что такое, – спрашивает он дальше, – Пространство и Время? Они реальны? А если нет, они формы или отношения вещей, но такие, какие присущи им, даже если они перестанут восприниматься? Или они есть формы или отношения, присущие исключительно форме интуиции и, следовательно, субъективной реальности нашего разума, без которых такие понятия, как пространство и время, никогда не получится отнести к чему-либо?»

Прежде чем услышать ответы Канта на данные вопросы, обратимся за двумя разъяснениями к словарю. «Кант… считал, что априорное знание состоит из конкретных «допущений» (как пространство и время) и принципов понимания, которые предположительно необходимы, чтобы опыт в целом стал интеллигибельным (постижимым умом)». Это устанавливает постоянно циркулирующую a priori, к которой обращается Кант. Другое техническое слово «аподиктический», которое означает «вовлекающий или выражающий неопровержимую истину, абсолютно верную, а также способную быть продемонстрированной ясно и удобно». Считая, что эти смысловые определения ясны (хотя едва ли такие четкие, как те, что приняты в элементарной геометрии, к которой адресует их Кант), постараемся понять, что же он хотел сказать. Ниже мы приводим изложенные Кантом выводы в четырех обобщенных предположениях, из которых нам необходимо взять только основное.

1. «Пространство не есть эмпирическое понятие, которое появляется из опыта… Образно пространство не может быть взято через опыт из отношений внешнего феномена, но, напротив, внешний феномен становится возможным только через представление о пространстве».

2. «Пространство есть априорное необходимое представление, фомирующее каждое обоснование всех внешних интуиций… Пространство, таким образом… есть условие возможности феномена, а не… форма созданного ими. Это априорное представление, которое необходимо предвосхищает внешний феномен».

Поскольку следующий текст достаточно сложен и ложен в деталях в свете современного знания, то приведем его полностью.

3. «По этой необходимости априорного представления пространство противостоит аподиктической несомненности всех геометрических принципов и возможности их априорного создания. Если интуиция пространства стала концепцией, полученной апостериори (a posteriori), только из общего внешнего опыта, первые принципы математических дефиниций становятся не чем иным, как перцепциями. Они будут распространены на все издержки перцепций, и, например, существование только одной прямой линии между двумя точками станет не необходимостью, а только чем-то полученным из опыта в каждом конкретном случае. Что бы ни было получено из опыта, оно будет обладать только соответствующей обобщенностью, основанной на умозаключении. Таким образом, мы не сможем сказать больше, поскольку до настоящего времени никакое пространство еще не найдено, кроме трехмерного».

Мы еще вернемся к некоторым положениям. Четвертый и последний вывод Канта мало что добавляет к первым трем.

4. «Пространство есть… чистая интуиция… Интуиция, которая априори не основана на опыте, должна сформировать обоснование всех концепций пространства. Тем же путем все геометрические принципы (например, «любые две стороны треугольника вместе больше третьей стороны») никогда не могли быть получены из общей концепции стороны или треугольника, но формируют интуицию, и это априорно с аподиктической верностью».

Это (по Канту) восприятие пространства и геометрии, с его априорными интуициями и его аподиктическими истинами, длительное время воспринималось как окончательное среди многочисленных метафизиков. Кант сформулировал похожую доктрину чисел и арифметики. Обе не заслуживают внимания в данной работе, поскольку не имеют ничего общего с математическим фактом. Его априорное «время» пошло путем его геометрии и арифметики, не потому, что конфликтовало с математикой, которая не связана с рассуждениями на тему природы времени, а потому, что оно опровергается современной экспериментальной и теоретической физикой. Здесь остановимся только на том, что имеет отношение к геометрии Канта.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Магия чисел. Математическая мысль от Пифагора до наших дней»

Представляем Вашему вниманию похожие книги на «Магия чисел. Математическая мысль от Пифагора до наших дней» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Магия чисел. Математическая мысль от Пифагора до наших дней»

Обсуждение, отзывы о книге «Магия чисел. Математическая мысль от Пифагора до наших дней» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x