ССК.Сокращение от сверхпроводящий суперколлайдер, проект строительства крупнейшего в мире ускорителя частиц в Ваксахачи, округ Эллис, Техас. Предполагалось, что ССК сможет достигнуть энергии протон-протонных столкновений 40 ТэВ. Проект закрыт конгрессом США в октябре 1993 года.
Стандартная модель в космологии.См. Лямбда-CDM.
Стандартная модельв физике элементарных частиц. Принятая в современной физике теоретическая модель, описывающая частицы материи и их взаимодействия между собой, за исключением гравитации. Стандартная модель состоит из квантовых теорий поля с локальными симметриями SU(3) (цветовое взаимодействие) и SU(2) × U(1) (слабое ядерное и электромагнитное взаимодействие). В Стандартную модель входят три поколения кварков и лептонов, фотон, W– и Z-частицы, глюоны – переносчики цветового взаимодействия и бозон Хиггса.
Степень свободы.Количество измерений, доступных для системы или в которых система свободно движется. Классическая частица может свободно двигаться в трех пространственных измерениях. Однако фотоны, будучи безмассовыми частицами со спином 1, ограничены лишь двумя измерениями, которые проявляются в виде левой и правой круговой поляризации или вертикальной и горизонтальной поляризации. В механизме Хиггса безмассовые бозоны получают третью степень свободы, поглощая бозон Намбу – Голдстоуна (см. рис. 14, с. 100).
Странность.Характерное свойство таких частиц, как нейтральные лямбда-частицы, нейтральные и заряженные сигма– и кси-частицы и каоны. Марри Гелл-Манн и Юваль Неэман использовали странность наряду с электрическим зарядом и изоспином для классификации частиц согласно восьмеричному пути (см. рис. 10, с. 82). Позднее это свойство было объяснено присутствием в этих частицах странного кварка (см. рис. 12, с. 95).
Странный кварк.Кварк второго поколения с зарядом — 1/ 3, спином 1/ 2(фермион) и массой 101 МэВ. Странность как характеристика относительно низкоэнергетических (низкомассовых) частиц была открыта в 1940 и 1950 годах Марри Гелл-Манном и независимо Кадзухико Нисидзимой и Тадао Накано. Позднее Гелл-Манн и Джордж Цвейг объяснили странность частиц присутствием в них странного кварка (см. рис. 12, с. 95).
Суперсимметрия.Альтернатива Стандартной модели физики элементарных частиц, в которой асимметрия между частицами материи (фермионами) и силы (бозонами) объясняется на основании нарушенной суперсимметрии. При высоких энергиях (например, таких, какие преобладали на самых ранних этапах после Большого взрыва) суперсимметрия не нарушена, то есть существует идеальная симметрия между фермионами и бозонами. Кроме асимметрии между фермионами и бозонами, нарушенная суперсимметрия предсказывает класс массивных суперпартнеров со спинами, отличающимися на 1/ 2. Суперсимметричные партнеры фермионов называются сфермионами. Партнер электрона называется сэлектроном; каждый кварк имеет партнера в виде соответствующего скварка. У каждого бозона есть бозино. Суперсимметричные партнеры фотона, W– и Z– частиц и глюонов – это фотино, вино, зино и глюино. Суперсимметрия решает многие проблемы Стандартной модели, но данные в пользу существования суперпартнеров еще не найдены.
Темная материя.Открытая в 1934 году швейцарским астрономом Фрицем Цвикки как аномалия при измерении масс галактик в скоплении Волос Вероники (в созвездии Волосы Вероники). Он сравнил массы, полученные на основе наблюдаемых движений галактик у края скопления, и массы на основе количества наблюдаемых галактик и общей яркости скопления. Результаты отличались в 400 раз. Казалось, целых 90 процентов массы, необходимой, чтобы объяснить гравитационные эффекты, отсутствовали или не поддавались наблюдению. Эта отсутствующая масса получила название темной материи. Дальнейшие исследования свидетельствуют в пользу формы темной материи, которую называют холодной темной материей. См. Холодная темная материя.
Теорема Нетер.Разработанная Амалией Эмми Нетер в 1918 году, теорема соединяет законы сохранения с непрерывными симметриями физических систем и описывающих их теорий, что используется как инструмент при разработке новых теорий. Сохранение энергии отражает тот факт, что управляющие энергией законы инвариантны изменениям или так называемым трансляциям во времени. Что касается импульса, то законы инвариантны трансляциям в пространстве. Что касается момента импульса, то законы инвариантны углу направления, измеренного от центра вращения.
Читать дальше
Конец ознакомительного отрывка
Купить книгу