1 ...8 9 10 12 13 14 ...87
Рис. 6
Непрерывное преобразование симметрии означает небольшое постепенное изменение непрерывной переменной, например расстояния или угла. ( a ) Когда мы поворачиваем круг на небольшой угол (δ), он представляется неизменным (инвариантным), и мы говорим, что он симметричен относительно подобных преобразований.
( b ) Квадрат, напротив, несимметричен в этом смысле. Квадрат симметричен относительно дискретного вращения на 90°
Теорема Нетер соединяет каждый закон сохранения с непрерывным преобразованием симметрии. Она обнаружила, что управляющие энергией законы инвариантны относительно непрерывных изменений, или трансляций во времени . Иными словами, математические отношения, описывающие динамику энергии в физической системе в какой-то момент времени t, будут точно такими же и через бесконечно малый промежуток времени.
Значит, эти законы не меняются со временем, а это есть именно то, что требуется отношениям между физическими свойствами, которые мы хотим поднять на уровень фундаментальных законов. Эти законы одинаковы для вчерашнего, сегодняшнего и завтрашнего дня, что в высшей степени обнадеживает. Если описывающие энергию законы не меняются со временем, тогда энергия должна сохраняться.
Применительно к импульсу Нетер показала, что законы инвариантны к непрерывным трансляциям пространства . Законы, управляющие сохранением импульса, не зависят от положения в пространстве. Они одинаковы здесь, там и везде. Для момента импульса законы инвариантны относительно преобразований вращения, как в вышеописанном примере с кругом. Они одинаковы безотносительно угла направления , измеренного от центра вращения.
Работая над теоремой, Нетер рассуждала примерно так. В физике есть определенные количества, которые, как следует из внимательных наблюдений и экспериментов, сохраняются. Сильно постаравшись, физики вывели законы, управляющие этими количествами. Как оказалось, законы инвариантны определенным непрерывным преобразованиям симметрии. Такая инвариантность означает, что эти количества должны сохраняться.
Эти рассуждения можно перевернуть и наоборот. Предположим, есть физическое количество, которое, как нам кажется, сохраняется, но для которого еще не объяснены законы, управляющие его поведением. Если физическое количество действительно сохраняется, то законы – каковы бы они ни были – должны быть инвариантны некоему непрерывному преобразованию симметрии. Если получится открыть, что это за симметрия, мы уже будем на полпути к открытию законов.
Перевернув рассуждения Нетер, мы избавляемся от необходимости долго гадать и тыкать пальцем в небо. Физики получили подход к формулированию законов, который позволял исключить целые виды возможных математических структур. Тот, кто найдет симметрию, связанную с неким физическим количеством, найдет короткий путь к ответу.
Одно такое физическое количество, которое, казалось, строго сохранялось, но не описывалось еще соответствующим законом сохранения, действительно существовало. Это был электрический заряд.
О феномене статического электричества знали еще философы Древней Греции. Они обнаружили, что можно генерировать электрический заряд и даже искры, если потереть о мех некоторые вещества, например янтарь. У научного исследования электричества долгая и блестящая история, в которой участвовали многие герои. Но только английский физик Майкл Фарадей, работавший в лондонском Королевском институте, соединил множество наблюдений в одно ясное представление о природе электрического заряда. Результаты многочисленных экспериментов неизбежно приводили к выводу, что электрический заряд нельзя ни создать, ни уничтожить ни в одном физическом или химическом преобразовании. Заряд всегда сохраняется.
Уже было открыто множество законов и правил, управляющих электрическим зарядом и его еще непонятной связью с магнетизмом, – это законы Кулона, Гаусса, Ампера, Био – Савара – Лапласа, Фарадея и так далее. В начале 1860-х шотландский физик Джеймс Клерк Максвелл сделал для теории электромагнетизма то, что Ньютон сделал для теории движения планет. Он осуществил смелый теоретический синтез, подобно тому как Фарадей синтезировал данные экспериментов. Красивые уравнения Максвелла в тесном объятии связали электрическое и магнитное поля, создаваемые движущимся электрическим зарядом [13].
Читать дальше
Конец ознакомительного отрывка
Купить книгу