В вычислительной Вселенной, где каждая физическая система действительно соответствует строке квантовых битов, а ее поведение запрограммированно случайными квантовыми флуктуациями, термодинамическая глубина и логическая глубина – взаимодополняющие и тесно связанные между собой величины. Чтобы до конца понять аналогию между термодинамической и логической глубиной, нужно найти физический аналог элементарной логической операции. В предыдущей главе мы как раз описали такой аналог: такая операция выполняется каждый раз, когда колеблется квантовая волна. Чтобы найти физический аналог числа операций, необходимых для создания строки битов, достаточно подсчитать число колебаний, которые потребовались для создания физической системы.
Из предыдущей главы мы помним, что это число колебаний пропорционально тому, что в физике называют действием физической системы. Действие – это число колебаний, умноженное на постоянную Планка. Действие, деленное на постоянную Планка, – хороший физический аналог числа элементарных операций, то есть вычислительной сложности. Чтобы оценить, как сложно было создать данную физическую систему, достаточно рассмотреть действие, которое потребовалось для ее создания. («Действие находится там, где происходит действие».)
Выводы предыдущей главы позволяют нам оценить логическую и термодинамическую глубину Вселенной в целом, а значит, найти верхнюю границу глубины всего, что она содержит. Общая сумма вычислительных усилий, потребовавшихся для создания Вселенной, составляет 10122 операций (логическая глубина), выполненных с 1092 битами (термодинамическая глубина).
Логическая и термодинамическая глубина – не единственные меры, позволяющие оценить численно те или иные аспекты сложности. В зависимости от того, какую черту сложной системы мы хотим описать, есть и другие меры, которые не менее или даже более полезны. Одна из них – величина, получившая название «эффективная сложность». Она измеряет степень регулярности системы; это определение сложности первоначально предложил Мюррей Гелл-Манн. В последние десять лет мы с Гелл-Манном пытаемся найти математически точное выражение для идеи эффективной сложности.
Эффективная сложность – простая и изящная мера сложности. С каждой физической системой связано определенное количество информации – количество, необходимое для описания физического состояния системы с той точностью, которую допускает квантовая механика. Основной способ измерить эффективную сложность чего-либо – разделить это количество информации на две части: информация, которая описывает регулярные аспекты данного объекта, и информация, которая описывает его случайные аспекты. Количество информации, необходимой для описания регулярности системы, и будет ее эффективной сложностью.
В технической системе – пусть это будет самолет – эффективная сложность по сути равна объему чертежей системы: это количество информации, необходимой для ее сборки. Например, чертежи самолета определяют форму его крыла, а также химический состав и процедуру производства сплава, из которого оно сделано. Форма крыла и состав сплава – это аспекты регулярности проекта; биты, которые определяют эти черты, должны иметь определенные значения, иначе самолет просто не взлетит. Эти биты включаются в эффективную сложность самолета. Но чертежи не определяют положения каждого атома крыльев. Биты, определяющие, где находится каждый атом в тот или иной момент времени, являются случайными; они не влияют на летные характеристики самолета и не являются индикатором его сложности.
Как показывает пример с самолетом, сложность – ключевой вопрос в инженерном деле. Как удается проектировать сложные системы, обладающие стабильным поведением? Принцип, который мы преподаем студентам инженерного факультета в Массачусетском технологическом институте, выражен известной аббревиатурой KISS: Keep It Simple, Stupid! (то есть чем проще – тем лучше). Но что, если система, которую вы проектируете, сама по себе сложна, например если это самолет? В Массачусетском технологическом институте есть кафедра проектирования систем, где инженеры, представители естественных и социальных наук вместе находят и решают проблемы сложных технических систем.
Один многообещающий метод проектирования сложных систем называют аксиоматическим проектированием. Этот подход предложил Нам Сух, бывший глава кафедры машиностроения Массачусетского технологического института. Идея аксиоматического проектирования состоит в том, чтобы свести к минимуму информационное содержание проектируемой технической системы, сохранив ее способность выполнять функциональные требования. При правильном применении аксиоматическое проектирование позволяет создавать самолеты, компьютерные программы и тостеры, достаточно сложные (но не более) для того, чтобы выполнять их проектные функции. Аксиоматическое проектирование сводит к минимуму эффективную сложность проектируемой системы, при этом сохраняя ее функциональность. В общем, чем проще – тем лучше, но не нужно слишком упрощать.
Читать дальше
Конец ознакомительного отрывка
Купить книгу