Но в какой степени она лучше других? В 1970-х гг. Грегори Хайтин и его коллега Чарльз Беннетт из IBM рассмотрели алгоритмическую информацию с точки зрения печатающих обезьян. Предположим, обезьяна набирает на клавиатуре случайные строки битов и вводит их в компьютер. Компьютер интерпретирует эти строки как программы, написанные на подходящем языке, скажем на Java. Какова вероятность того, что компьютер выдаст первый миллион цифр числа p? Такая же, как и вероятность того, что случайные строки, введенные в компьютер обезьяной, воспроизведут программу на Java, позволяющую вычислить первый миллион цифр числа p. Вероятность того, что обезьяна правильно напечатает первый бит такой программы, разумеется, составляет 0,5, или 1/2. Вероятность того, что она правильно напечатает два первых бита, составляет 0,25, или 1/4. Вероятность того, что правильно будут напечатаны первые 1000 битов, есть 1/2, умноженная на себя 1000 раз, или 1/21000. Это очень малое число. Очевидно, чем длиннее программа, тем менее вероятно, что обезьяна правильно введет ее в компьютер.
Вероятность того, что случайная программа, которую обезьяна вводит в компьютер, выдаст первый миллион цифр числа p, называют «алгоритмической вероятностью» числа p. Поскольку вероятность случайно правильно набрать длинную программу многократно меньше, чем вероятность правильно набрать короткую, алгоритмическая вероятность максимальна для самых коротких программ. Самая короткая программа, которая может дать на выходе то или иное число, является самым вероятным объяснением того, как это число было создано.
Если взглянуть на это под другим углом, то числа, создаваемые короткими программами, с большей вероятностью окажутся выходом обезьяньего компьютера, чем числа, которые могут быть произведены лишь с помощью длинных программ. При этом множество красивых и сложных математических образов – правильные геометрические формы, фракталы, законы квантовой механики, элементарные частицы, законы химии – можно задать с помощью коротких компьютерных программ. Хотите верьте, хотите нет, но у обезьяны есть хороший шанс создать все, что мы видим вокруг!
Алгоритмически вероятные вещи – это как раз те, которые демонстрируют большую степень регулярности, структуры и порядка. Другими словами, Вселенная обезьяны, печатающей на пишущей машинке, бессмысленна, а Вселенная обезьяны, сидящей за компьютером, содержит, помимо большого количества бессмыслицы, некоторые интересные черты. Большие фрагменты Вселенной обезьяны-программистки состоят из структур, которые можно создать на основании простых математических формул и коротких компьютерных программ. Если обезьяны вводят текст в компьютеры, а не печатают его на пишущих машинках, они создают Вселенную, где смешаны порядок и хаос, где сложные системы сами собой возникают из простых первоэлементов – то есть они создают Вселенную, подозрительно похожую на нашу. Простые программы вместе с обширной обработкой информации создают сложные выходные данные. Может ли это объяснить сложность нашей Вселенной?
Что нужно делать, чтобы это объяснение было проверяемым? [41]Чтобы вычислительное объяснение сложности работало, нужны два ингредиента: компьютер и обезьяны. Компьютер существует благодаря законам квантовой механики. Но где обезьяны? Какой физический механизм вводит информацию в нашу Вселенную, программируя ее с помощью строки случайных битов? Здесь нам тоже не нужно искать что-либо, кроме законов квантовой механики, которые постоянно вбрасывают новую информацию во Вселенную в виде квантовых флуктуаций . В ранней Вселенной, например, галактики формировались вокруг «зародышей» – мест, где плотность материи была чуточку выше, чем в других местах. Эти «зародыши» галактик возникли в результате квантовых флуктуаций: средняя плотность материи повсюду была одинаковой, но квантовая механика добавила случайные флуктуации, благодаря которым и начали формироваться галактики.
Квантовые флуктуации вездесущи и имеют тенденцию возникать в тех точках, где Вселенная наиболее чувствительна. Например, возьмем биологию. Мы получаем свою ДНК от отца и матери, но наша индивидуальная последовательность ДНК возникает в процессе рекомбинации, после того как сперма входит в яйцеклетку и вносит в нее свой генетический материал [42]. То, какие гены матери объединятся с какими генами отца, существенным образом зависит от химических и тепловых флуктуаций во время процесса рекомбинации, а эти химические и тепловые флуктуации имеют в своей основе квантовую механику. Квантовые события – и ничто иное – запрограммировали вашу ДНК так, что она отличается от ДНК ваших братьев и сестер. Вы и я, а также различия между нами произошли из квантовых событий. И так же из квантовых «зародышей» возникла сама Вселенная. Квантовые флуктуации – это и есть обезьяны, программирующие Вселенную .
Читать дальше
Конец ознакомительного отрывка
Купить книгу