Как заставить атом отвечать нам? Мы можем воздействовать на атом светом, и атом ответит нам, тоже используя свет. Представим себе третье состояние, |2>, с более высокой энергией, чем в состояниях кубита |0> и |1>. Предположим, что всякий раз, когда атом находится в состоянии |2>, он имеет тенденцию спонтанно возвращаться в |0>, в нормальное состояние, испуская при этом фотон. Спонтанное излучение ответственно за явление флуоресценции. Флуоресцентная лампа возбуждает атомы из их нормального состояния и позволяет им переходить обратно, излучая свет. Энергия испускаемого фотона равна разности энергий между состоянием |2> и состоянием |0>. Если посмотреть внимательно, скажем в микроскоп, иногда можно увидеть испускаемый фотон как вспышку света. Это атом говорит с нами.
Историю Вселенной можно рассматривать как последовательность революций в сфере обработки информации, каждая из которых основана на технологиях, возникших в результате предыдущих революций
Чтобы инвертировать квантовый бит, достаточно просто направить на него луч света. Рис. 11a показывает кубит – ядерный спин – в состоянии «вверх», или 0. На рис. 11b появляется частица света, или фотон. Она поглощается ядерным спином, который переходит в состояние «вниз», или 1 (рис. 11c)
Способность видеть спонтанно испускаемые фотоны позволяет нам определить, находится ли атом в нормальном состоянии. Искупайте атом в свете из фотонов, энергия каждого из которых равна разности энергий между состояниями |0> и |2>. Если атом находится в нормальном состоянии, то, поскольку фотоны, в которых он купается, обладают правильной энергией, он поглотит фотон и перейдет в состояние |2>. Вскоре после этого он испустит фотон и вернется в нормальное состояние. Затем он поглотит еще один фотон и перейдет в состояние |2>. Затем он испустит фотон и опять вернется в нормальное состояние. Такой процесс, в котором атом продолжает поглощать и испускать фотоны, называют «циклическим переходом», потому что атом переходит туда и обратно между двумя хорошо определенными состояниями.
Если же атом сначала находится в состоянии |1>, то он не может поглотить фотон и перейти в состояние |2>, потому что доступные ему фотоны обладают неподходящей энергией. Атом, который сначала находится в состоянии |1>, в нем и останется, не обращая внимания на фотонный душ, и флуоресценции не будет. А вот атом, который демонстрирует флуоресценцию, по существу, говорит нам: «Я – 0! Я – 0! Я – 0! Я – 0!»
Теперь давайте посмотрим повнимательнее, как атомы переходят из одного состояния в другое под воздействием лазера. Возьмем атом в его нормальном состоянии и искупаем его в свете из фотонов, энергия которых равна разности энергий нормального и первого возбужденного состояния. Что происходит во время скачка? Во время перехода атом и свет находятся в состоянии, которое является суперпозицией нормального состояния атома без поглощенного фотона, и атома в первом возбужденном состоянии с одним поглощенным фотоном. То есть состояние атома – суперпозиция двух волн. Первая волна находится в нормальном состоянии, а вторая волна – в первом возбужденном состоянии. Сразу же после того как атом начинает принимать световой душ и начинает переход, эта суперпозиция состоит главным образом из нормального состояния с небольшой «примесью» возбужденного. В середине перехода атом и световая ванна находятся в примерно равной суперпозиции состояний |0, фотон не поглощен> + |1, фотон поглощен>. Вблизи конца перехода суперпозиция представляет собой главным образом возбужденное состояние, с небольшим остатком нормального состояния.
Итак, атом перескакивает из нормального состояния в возбужденное не сразу. Он скорее «скользит» через непрерывную последовательность промежуточных суперпозиций. Такое же непрерывное скольжение происходит, когда атом возвращается из первого возбужденного в нормальное состояние, испуская фотон. Атом и фотонный душ начинают в состоянии |1, фотон не испущен>, и заканчивают в состоянии |0, фотон испущен>. В середине перехода атом и душ находятся в состоянии суперпозиции |1, фотон не испущен> + |0, фотон испущен>.
Такое описание атома, переходящего из одного состояния в другое с поглощением или испусканием фотона, похоже на сделанное ранее описание ядерного спина, переходящего из одного состояния в другое под воздействием магнитного поля. Действительно, эти два процесса по сути одинаковы. Поворачиваясь, ядерный спин также поглощает фотон – из магнитного поля – и испускает фотон, возвращаясь в исходное состояние.
Читать дальше
Конец ознакомительного отрывка
Купить книгу