Сет Ллойд - Программируя Вселенную. Квантовый компьютер и будущее науки

Здесь есть возможность читать онлайн «Сет Ллойд - Программируя Вселенную. Квантовый компьютер и будущее науки» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2014, ISBN: 2014, Издательство: Array Литагент «Альпина», Жанр: foreign_edu, Прочая научная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Программируя Вселенную. Квантовый компьютер и будущее науки: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Программируя Вселенную. Квантовый компьютер и будущее науки»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Каждый атом Вселенной, а не только различные макроскопические объекты, способен хранить информацию. Акты взаимодействия атомов можно описать как элементарные логические операции, в которых меняют свои значения квантовые биты – элементарные единицы квантовой информации. Парадоксальный, но многообещающий подход Сета Ллойда позволяет элегантно решить вопрос о постоянном усложнении Вселенной: ведь даже случайная и очень короткая программа в ходе своего исполнения на компьютере может дать крайне интересные результаты. Вселенная постоянно обрабатывает информацию – будучи квантовым компьютером огромного размера, она все время вычисляет собственное будущее. И даже такие фундаментальные события, как рождение жизни, половое размножение, появление разума, можно и должно рассматривать как последовательные революции в обработке информации.

Программируя Вселенную. Квантовый компьютер и будущее науки — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Программируя Вселенную. Квантовый компьютер и будущее науки», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Эпитафия на могиле Больцмана гласит: «S = k log W», и это просто математически изысканный способ сказать, что энтропия объекта пропорциональна числу битов, записанных его микросостоянием. То же самое можно выразить и по-другому: энтропия пропорциональна длине числа возможных микросостояний, если записать его в двоичной системе счисления. В этой формуле k называют постоянной Больцмана.

Пауль и Татьяна Эренфест [14], которые сделали важный вклад на начальном этапе исследований энтропии, указывали, что эту формулу на самом деле впервые предложил Планк, и поэтому константу, которую мы называем «постоянной Больцмана», они называли «постоянной Планка». Но, как мы увидим, когда будем рассматривать квантовую механику, именем Планка уже названа довольно важная константа. Чтобы избежать путаницы, а также увековечить заслуги Больцмана, символу « k » дали его имя. (Больцман славился своим угрюмым характером – он покончил с собой вскоре после визита в Соединенные Штаты в 1906 г. Остается только гадать, что бы он сделал, если бы узнал, что на его могильном камне выбита чужая формула.)

Максвелл, Больцман, Гиббс и Планк обнаружили, что энтропия пропорциональна числу битов информации, записанной в микроскопических движениях атомов. Конечно, эти ученые XIX в. еще не думали, что их открытие относится главным образом к информации. В то время энтропию не измеряли в битах, и они считали, что их открытие корректно описывает термодинамическую энтропию – величину, которая ограничивает эффективность тепловых машин. Они были правы, разумеется, и поскольку тогда энтропию не измеряли в битах, полученную ими безразмерную величину log W нужно было умножить на постоянную Больцмана, чтобы преобразовать энтропию с точки зрения информации в обычную термодинамическую энтропию Клаузиуса. Неважно, осознавали они это или нет, но пионеры статистической механики вывели формулу для вычисления информации за пятьдесят лет до того, как возникла математическая теория информации.

Но как физическая система, например газ, записывает и сохраняет информацию? Возьмем детский воздушный шарик, заполненный гелием. Атомы гелия в воздушном шарике носятся с места на место, сталкиваясь друг с другом и с оболочкой шарика. Каждый атом гелия есть носитель информации, а именно – количества информации, необходимого для описания того, где он находится (положение), куда и как быстро он движется (скорость). Чтобы измерить количество информации, которую содержит атом, следует определить самый малый масштаб, то есть степень точности, с которой могут быть описаны положение и скорость атома. Тогда число битов, которые содержит данный атом, будет равно числу битов, необходимых для того, чтобы определить его положение и скорость с точностью, заданной этим самым малым масштабом. Позже мы увидим, что пределы точности, с которыми могут быть измерены положение и скорость, определяются квантовой механикой. С учетом этого естественного масштаба каждый атом в воздушном шарике содержит около 20 битов. Количество информации, записанной всеми атомами гелия в воздушном шарике, является произведением этой величины на количество атомов, а их примерно 6х1023. Таким образом, гелий в воздушном шарике содержит примерно десять миллионов миллиардов миллиардов (1025) битов информации.

Это очень много информации. Книга, которую вы держите в руках, содержит лишь несколько миллионов битов информации [15]. Миллионы книг библиотеки Конгресса содержат миллионы миллионов битов. Все компьютеры в мире в настоящее время содержат миллиард миллиардов битов, если не больше. И все же все биты информации, созданные человеком в письменном или электронном виде, все равно не могут сравниться с количеством информации, записанной атомами гелия в одном воздушном шарике.

Конечно, биты информации, которую содержат атомы гелия в воздушном шарике, не тянут на приключенческий роман. Как и тексты, напечатанные обезьяной на пишущей машинке, биты, запечатленные атомами, с очень высокой вероятностью представляют собой бессмыслицу. Даже если положения и скорости атомов гелия в какой-то момент времени вдруг можно расшифровать как полный текст «Гамлета» (а мы уже знаем, что это крайне маловероятно), секунду спустя эти биты снова «рассыплются» в случайную картину.

Принцип Ландауэра

Второе начало термодинамики гласит, что общая сумма информации никогда не уменьшается. Для нашего воздушного шарика это значит, что количество битов информации, записанной атомами гелия, не станет меньше, если воздушный шарик останется в состоянии покоя. Конечно, если мы охладим воздушный шарик, сожмем или проткнем его, количество битов, хранимых атомами гелия в нем, может уменьшиться – но только за счет увеличения числа битов, записанных атомами воздуха, окружающими воздушный шарик.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Программируя Вселенную. Квантовый компьютер и будущее науки»

Представляем Вашему вниманию похожие книги на «Программируя Вселенную. Квантовый компьютер и будущее науки» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Виктор Филалетов - Будущее науки
Виктор Филалетов
Отзывы о книге «Программируя Вселенную. Квантовый компьютер и будущее науки»

Обсуждение, отзывы о книге «Программируя Вселенную. Квантовый компьютер и будущее науки» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x