Нейт Сильвер - Сигнал и шум. Почему одни прогнозы сбываются, а другие – нет

Здесь есть возможность читать онлайн «Нейт Сильвер - Сигнал и шум. Почему одни прогнозы сбываются, а другие – нет» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Город: Москва, Год выпуска: 2015, ISBN: 2015, Издательство: Array Литагент «Аттикус», Жанр: foreign_edu, foreign_publicism, Прочая научная литература, Публицистика, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Сигнал и шум. Почему одни прогнозы сбываются, а другие – нет: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Сигнал и шум. Почему одни прогнозы сбываются, а другие – нет»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Мы считаем, что наш мир во многом логичен и предсказуем, а потому делаем прогнозы, высчитываем вероятность землетрясений, эпидемий, экономических кризисов, пытаемся угадать результаты торгов на бирже и спортивных матчей. В этом безбрежном океане данных важно уметь правильно распознать настоящий сигнал и не отвлекаться на бесполезный информационный шум.
О том, как этому научиться, рассказывает Нейт Сильвер, политический визионер и гуру статистики, разработавший систему прогнозов, позволившую дважды максимально точно предсказать результаты президентских выборов почти во всех штатах Америки. Его книга во многом близка исследованиям Нассима Талеба и столь же значима для всех, кто имеет дело с большими объемами данных и просчитывает различные варианты развития событий. И если Талеб говорит о законах зарождения «черных лебедей», Сильвер исследует модели и способы, позволяющие поймать этих птиц в расставленные нами сети. Он обобщает опыт экспертов-практиков, изучает различные модели и подходы, позволяющие делать более точные прогнозы. Как и Даниэль Канеман, автор бестселлера «Думай медленно… Решай быстро», наблюдая за поведением и мышлением людей, оценивающих неопределенные события, Сильвер утверждает: да, компьютеры незаменимы при работе с огромными массивами данных, но для максимальной точности результатов необходим гибкий человеческий ум и опыт, ведь прогнозирование – это планирование в условиях неопределенности.

Сигнал и шум. Почему одни прогнозы сбываются, а другие – нет — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Сигнал и шум. Почему одни прогнозы сбываются, а другие – нет», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Именно это явление неслучайного перемешивания и стало причиной «фиаско свиного гриппа» в 1976 г., когда ученые посчитали H1N1 угрозой национального масштаба на основании нескольких случаев заболевания в Форт-Дикс. Штамм свиного гриппа – известный в наши дни под названием A/New Jersey/76 – казался столь угрожающим отчасти потому, что быстро распространился по военной базе: в течение от двух до трех недель было диагностировано 230 подтвержденных случаев {526}. Это дало ученым основание предположить, что у болезни имеется крайне высокое репродуктивное число R0, близкое к 3, что было сопоставимо со значением R0 для пандемии «испанки» 1918 г.

Однако воинское подразделение можно считать средой, предрасположенной к заболеваниям. Солдаты находятся в нетипично тесном контакте друг с другом, в условиях, где им приходится делиться едой и постельными принадлежностями и сложно уединиться. Более того, они часто выполняют тяжелые физические упражнения, которые временно истощают иммунную систему, а социальные нормы в армии предполагают, что вы должны заниматься делом, даже если больны. Таким образом, для передачи инфекционного заболевания появляется множество возможностей, и оно начинает распространяться значительно быстрее.

Последующее изучение {527}событий в Форт-Дикс показало, что бурное распространение заболевания было вызвано этими особыми факторами, а не его вирулентностью. Форт-Дикс нельзя было считать аналогом какого-нибудь американского пригорода. Сам по себе штамм A/New Jersey/76 не был таким уж опасным. Значение R0 для него составляло всего 1,2, то есть было примерно таким же, как у обычного сезонного гриппа. Если бы дело происходило не на военной базе (или в другом месте с похожими условиями, типа тюрьмы или университетского общежития), то болезнь не распространилась бы так широко. В сущности, грипп в Форт-Дикс исчез сам по себе, после того как на базе не осталось инфицированных людей.

Фиаско, связанное с A/New Jersey/76, – как и парадокс в отношении ВИЧ/сифилиса в Сан-Франциско или всплески кори в Чикаго в 1980‑е гг. – способно многое сказать об ограничениях моделей, основанных на слишком упрощенных допущениях. Конечно же, я не хочу сказать, что вам всегда стоит предпочитать сложные модели простым; как мы уже видели в других главах этой книги, сложные модели так же успешно могут завести людей в тупик. А поскольку сложные модели часто дают нам более точные (хотя и не обязательно правильные) ответы, они способны слишком повысить самоуверенность исследователя и заставить его ошибочно считать себя отличным прогнозистом.

Тем не менее, хотя и можно считать плюсом модели ее простоту, она должна быть хотя бы изощренно простой {528}. Модели типа SIR, хотя и полезны для понимания болезни, слишком туповаты для того, чтобы помочь нам предсказать ее дальнейшее развитие.

Система имитационного моделирования Sim [99]в действии

Прогнозы погоды представляют собой один из немногих примеров сравнительно сложных моделей, в рамках которых качество предсказаний смогло значительно улучшиться. Для этого потребовались десятилетия работы, однако после создания системы, способной физически имитировать атмосферу, метеорологи получили возможность делать нечто большее, чем использовать исключительно статистические подходы к предсказаниям погоды.

Все больше и больше профессионалов пытается применять аналогичный подход к предсказанию развития болезней на основе агентного моделирования [100]. Я побывал в Питтсбургском университете и встретился с исследователями, находящимися на передовом крае разработки этой методики. Для названия своей модели команда использует аббревиатуру FRED, которая расшифровывается как «основа реконструкции динамики эпидемий» (framework for reconstruction of epidemic dynamics). Одновременно это имя является своеобразной данью уважения уроженцу Питтсбурга Фреду Роджерсу, бывшему ведущему детского телевизионного шоу «Mister Rogers’ Neighborhood».

Питтсбург, как и Чикаго, – это город, состоящий из пригородов. Размышляя о болезни, исследователи постоянно апеллируют к ним, и поэтому FRED представляет собой своеобразный аналог Питтсбурга – СимПиттсбург (SimPittsburgh) – невероятно детальную имитационную модель, в которой каждый человек представлен «агентом», имеющим семью, сеть социальных контактов, место жительства и набор убеждений и манер поведения, соответствующих его социально-экономическому статусу.

Доктор Джон Грефенстетте, один из ученых питтсбургской команды, прожил в этом городе значительную часть своей жизни, однако до сих пор говорит с заметным иностранным акцентом. Он рассказал мне, как организована работа FRED: «Школы, офисы и больницы размещены в этой модели так же, как в реальном городе. У жителей нашей системы имеются вполне реальные проблемы при записи детей в школы; они не всегда ходят в самую ближнюю – а кроме того, некоторые школы слишком малы, в то время как другие огромны. Это чем-то напоминает игру SimCity». Доктор Грефенстетте и его любезный коллега доктор Шон Браун показали мне некоторые результаты имитационного моделирования, полученные с использованием FRED, на которых волны болезней, раскрашенные разным цветом, распространялись по районам СимПиттсбурга, СимВашингтона или СимФиладельфии. Однако при этом FRED – это серьезный бизнес. Модели такого рода не ищут легких путей, в них должны быть представлены практически все жители города, графства или штата.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Сигнал и шум. Почему одни прогнозы сбываются, а другие – нет»

Представляем Вашему вниманию похожие книги на «Сигнал и шум. Почему одни прогнозы сбываются, а другие – нет» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Евгения Горская - Сбываются другие мечты
Евгения Горская
Отзывы о книге «Сигнал и шум. Почему одни прогнозы сбываются, а другие – нет»

Обсуждение, отзывы о книге «Сигнал и шум. Почему одни прогнозы сбываются, а другие – нет» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x