В противоположность этому, три вышеуказанных правила являются хоть и опровергаемыми, но содержательными утверждениями. Они подтверждаются не логикой, а фактами. Может показаться, что выдающиеся результаты объясняются сниженными ценами, сниженными затратами и способностью манипулировать тем и другим. На самом деле это не так. По причинам, которые мы собираемся объяснить ниже, мы полагаем, что ключ к выдающимся результатам – это последовательное соблюдение трех принципов: «лучше» важнее, чем «дешевле»; увеличение доходов важнее сокращения расходов ; и – независимо от стоящего перед вами выбора – никаких других правил нет .
И помните, что стремление к величию состоит более в его сотворении, нежели в ожидании подарков судьбы.
Глава 2
Как различить полезный сигнал в шуме
По жанру эта книга относится к так называемым исследованиям успеха. Возможно, вы читали или, по крайней мере, слышали об известных и важных публикациях в этом жанре, и прежде всего «В поисках совершенства» (In Search of Excellence) Тома Питерса и Роберта Уотермана и «От хорошего к великому» (Good to Great) Джима Коллинза. В свое время мы внимательно прочли довольно много подобных книг (см. приложение B «Библиография исследований успеха») {17} 17 Не мы первые попытались бросить критический взгляд на этот жанр, и в частности на эти произведения. См. прежде всего Phil Rosenzweig . The Halo Effect… and the Eight Other Business Delusions That Deceive Managers. N. Y.: Free Press, 2007 и Jeffrey Pfeifer and Robert I. Sutton . Hard Facts, Dangerous Half-Truths & Total Nonsense: Profitingfrom Evidence-Based Management. Boston: Harvard Business School Press, 2006.
.
Если вы тоже читаете подобные книги, вас следует отнести к одной из трех обозначенных ниже категорий. Вероятно, вы считаете рецепты, предлагаемые в предыдущих подобных публикациях, убедительными или просто подходящей пищей для размышлений, и в этом случае мы рекомендуем вам читать эту главу с некоторой осторожностью. Далее мы постараемся показать, что выводы предыдущих работ являются ошибочными из-за того, что методы, которыми пользовались их авторы, имели принципиальные недостатки, и что мы приложили много усилий для исправления ситуации путем обоснования разумности и надежности наших выводов.
И в то же время, вероятно, вы склонны игнорировать рекомендации авторов предыдущих работ – опять же из-за того, что методы, которыми пользовались эти авторы, имели принципиальные недостатки. В этом случае мы тоже рекомендуем вам читать эту главу с некоторой осторожностью.
Если же вы не попали ни в одну из этих категорий (а значит, относитесь к третьей), то можете просто пропустить эту главу.
Итак, если вы считаете предыдущие исследования успеха убедительными или, наоборот, игнорируете их как достаточно поверхностные, мы рекомендуем вам прочитать эту главу, потому что наши методы выявления выдающихся компаний и определения причин достижения ими выдающихся результатов кардинально отличаются от тех, которые использовались до нас. Осознание этих различий позволит читателю серьезнее отнестись к нашим выводам.
В каждом исследовании успеха ключевое предположение состоит в том, что выводы о причинах различий в показателях работы компаний можно сделать, сравнив поведение компаний, демонстрирующих высокие показатели, с поведением компаний, демонстрирующих низкие показатели. В большинстве случаев в таких исследованиях задаются (более или менее интуитивно) некие контрольные значения, после чего объявляется, что любые компании, превысившие эти значения, добились выдающихся результатов.
Здесь возникает первая проблема, потому что в отношении того, что считать существенной разницей в показателях, наша интуиция – совершенно негодный арбитр. Например, если вам скажут, что индекс широкого рынка показывал совокупную акционерную прибыль, или совокупный доход акционеров (СДА/TSR), в годовом исчислении на уровне 9,2 % в течение трех месяцев, а у компании A и компании Б значения СДА за тот же период (и тоже в пересчете на год) составили соответственно 9,3 и 9,1 %, сочтете ли вы, что имеет смысл попытаться определить, какими различиями в поведении обусловлена эта разница в показателях компаний? Если ваша интуиция в этом отношении сходна с нашей, вы ответите «нет». Это различие просто недостаточно существенное и наблюдалось на протяжении недостаточно длительного времени, чтобы признать оправданным сколько-нибудь глубокое исследование.
И тут же возникает следующая проблема: если мы утверждаем, что такие различия в показателях настолько малы, что их нельзя считать информативными, то нам придется указать, насколько велики должны быть различия в показателях, чтобы их можно было считать информативными (значимыми). На концептуальном уровне разница в 0,1 % в годовом исчислении в течение трех месяцев не отличается от 10-кратной разницы за 10 лет. И хотя во втором случае разница, конечно, ощущается как существенная и значимая, у нас нет никаких реальных доказательств, подтверждающих то или другое интуитивное предположение. Гораздо лучше количественно оценить вероятность того, что данное различие действительно является различием, заслуживающим изучения {18} 18 См.: Michael J. Mauboussin . The Success Equation: Untangling Skill and Luck in Business, Sports, and Investing. Boston: Harvard Business Review Press, 2012.
. Только в этом случае мы можем надеяться выделить полезный сигнал, скрытый в шуме.
Читать дальше
Конец ознакомительного отрывка
Купить книгу