В этих расчетах есть некоторые контринтуитивные аспекты, требующие дополнительного пояснения. Число лет, в течение которых компании необходимо получать целевые оценки в баллах (или оценки в целевом диапазоне баллов), не увеличивается монотонно с увеличением срока существования компании. Отметим, например, что если компания существует 20 лет, то для зачисления в «чудотворцы» она должна получить 12 годовых 9-балльных оценок, если компания существует 30 лет, то число необходимых 9-балльных оценок снижается до 10, а если она существует уже 45 лет, оно снова увеличивается до 16. Это связано с нашим методом коррекции проблемы ложноположительных результатов, а также так называемой систематической ошибки выжившего (survivor bias).
Таблица 46 . Число целевых годовых оценок по 10-балльной шкале, необходимое для достижения статуса «чудотворца»
Источники: Compustat; анализ Deloitte.
Исходя из матрицы изменений 10-балльных оценок, для получения статуса «чудотворца» компании, данные по которой имеются за 35 лет, требуется больше годовых 9-балльных оценок, чем компании, данные по которой имеются за 20 лет; однако компаний с данными за 20 лет больше, чем компаний с данными за 35 лет, поэтому чтобы снизить вероятность получения ложноположительного результата до 10 %, нам необходимо «поднять планку» для компаний с данными за 20 лет.
Неожиданно большие значения для компаний с данными за 45 лет связаны со сравнительно большим числом таких компаний в нашей совокупности; многие из них возникли еще до 1966 г. (начало нашей базы данных) и все еще существовали в 2010 г. (конец нашей базы данных). Наши значения квантильной регрессии отражают как минимум некоторые воздействия выживаемости на ФР, но даже в этом случае если эти компании-долгожители имеют какие-то отличительные особенности, то, компенсируя большее число таких компаний ужесточением критериев, мы снижаем вероятность систематической ошибки выжившего.
СДА и рост выручки
Для выявления в статистическом смысле исключительных значений роста выручки и СДА требуется иной подход, поскольку при определении рентабельности компании в течение определенного периода необходимо учитывать кумулятивность: кумулятивный годовой рост от года 0 до года 2 зависит от показателей, достигнутых компанией и в 1-й год, и во 2-й год. Поэтому компания может продемонстрировать заоблачный относительный рост в течение 2-го года (например, рост на 50 %), даже если она вообще практически не росла в предыдущие два года (годы 0 и 1), и это означает, что ее рост в течение 2-го года рассчитывается на основании слишком малой базы. Исходя из этого, мы решили, что наш подход с использованием 10-балльных годовых оценок здесь неуместен. В самом деле, возьмем экстремальный пример: компания, у которой годы 50 %-го «усыхания» чередуются с годами 100 %-го роста при анализе половины данных, соответствующих бурному росту (согласно критериям выявления выдающейся рентабельности), будет характеризоваться очень быстрым ростом, хотя ее общий рост за этот период составит 0 %.
Вместо этого мы строили регрессионные модели отдельно для роста выручки и для СДА (на концептуальном уровне оба этих показателя анализируются одинаково). Эта регрессия позволяет прогнозировать рентабельность, которую данная компания «должна иметь» в данном году в зависимости от ее размеров, года, отрасли, срока существования и показателей за предыдущий год. В каждом конкретном году фактическая рентабельность компании обычно отклоняется от прогнозируемого значения и оказывается либо выше его (положительный остаток), либо ниже его (отрицательный остаток). Сумма этих остатков образует кумулятивный остаток компании, или «сырую» R-оценку.
Однако напрямую сравнивать «сырые» R-оценки мы не можем. Две компании, имеющие одинаковые годовые R-оценки, получат разные агрегированные оценки, если у них разные сроки существования: если R-оценки роста у компаний А и В составляют, скажем, 5 % в год, но компания А существует 15 лет, а компания В – 20 лет, то компания В будет иметь более высокую R-оценку просто в силу большей длительности ее существования, а не в силу более интенсивного роста. Для коррекции этого несоответствия мы используем моделирование, позволяющее определить ожидаемую R-оценку для компаний с разной длительностью наблюдений. Таким образом мы получаем «исправленные» R-оценки для всех компаний, уже сопоставимые между собой. Затем мы упорядочиваем эти исправленные R-оценки, ранжируя каждую компанию по СДА и росту выручки с учетом срока ее существования.
Читать дальше
Конец ознакомительного отрывка
Купить книгу