Один и тот же воздушный объект мог фиксироваться в пространстве в различные моменты реального времени, которое передавалось в составе сообщений на другие соседние РЛУ. Кроме того, сообщения могли задерживаться при ожидании в очереди для передачи в телекоммуникационные каналы связи и поступать для обобщения с измененным реальным временем. Таким образом, перед обобщением координаты и параметры движения объектов от различных источников для устранения в них различия реального времени необходимо было их пересчитывать (экстраполировать) к значению единого времени на момент обобщения координат объекта.
Достоверность координат и параметров движения одного и того же объекта от различных РЛУ могла значительно различаться, что приходилось учитывать при их обобщении в единую траекторию. Для обеспечения взаимодействия РЛУ и обмена информацией между ними была создана телекоммуникационная сеть на базе специально выделенных каналов обычных телефонных линий связи. Структура сообщений в сети о наблюдаемых объектах и командах оперативного состава РЛУ была унифицирована, кодировалась и декодировалась в специальных устройствах, сопряженных с компьютерами РЛУ.
В сферу научных исследований и разработок в начале 60-е годов в Советском Союзе (почти одновременно в несколько ином виде в США) вошел и был апробирован новый широкий класс вычислительных систем и телекоммуникационных сетей реального времени – прототип современных информационных глобальных сетей и Интернета. В нем основными компонентами и источниками информации являлись траектории воздушных объектов, характеризующиеся их назначением, координатами и обобщенными параметрами движения, определяющие требования к функциям сложных комплексов программ управления.
4.4. Моделирование динамических объектов для тестирования и испытаний комплексов программ в реальном времени в 1960-е – 80-е годы
Сложные комплексы программ оборонного назначения должны обладать высоким качеством, для чего их необходимо тестировать и испытывать в условиях динамического воздействия информации от внешней среды максимально приближающейся к реальной. Однако создавать специальные полеты самолетов, имитирующих противника, истребителей-перехватчиков, пуски и полет ракет и другие действия средств реальной военной техники для отладки и первичных испытаний программ очень дорого, не рентабельно и опасно. При этом высокая стоимость и риск испытаний с реальными объектами почти всегда оправдывал значительные затраты на интегрированные имитационные системы внешней среды, если предстояли испытания критических программных продуктов с высокими требованиями к качеству функционирования программ, с длительным жизненным циклом и множеством развивающихся версий. Высокая сложность некоторых объектов внешней среды, особенно, если при их функционировании активно участвуют операторы-пользователи, не позволяла полностью автоматизировать всю имитацию тестовых данных, для крупных программных продуктов оборонного назначения. Поэтому при реализации интегрированных проблемно-ориентированных моделей приходилось использовать аппаратурные аналоги реальных объектов внешней среды для формирования части данных. Разумное сочетание реальных объектов внешней среды и программных имитаторов на ЭВМ обеспечивало создание высокоэффективных стендов с адекватными комплексными моделями объектов внешней среды, необходимыми для испытаний программных продуктов в реальном времени [17, 11].
В качестве альтернативы натурным испытаниям с реальными объектами уже в середине 60-х годов стали разрабатываться имитаторы – генераторы тестов, адекватные динамическому поведению реальных объектов внешней среды и средств вооружения. Одними из наиболее сложных и дорогих имитаторов внешней среды, применяемых для испытаний комплексов программ, стали использоваться модели и испытательные стенды: объектов систем противовоздушной обороны, полета космических аппаратов; диспетчерских пунктов управления воздушным движением и другие. В частности, позже, благодаря отладке и испытаниям на имитационно-моделирующих стендах комплексов программ удалось совершить безупречный автоматический полет системы БУРАН. До настоящего времени обеспечивается надежное и устойчивое функционирование ряда орбитальных группировок космических аппаратов различного назначения, в том числе Системы Предупреждения о Ракетном Нападении (СПРН) [13, 14].
Читать дальше
Конец ознакомительного отрывка
Купить книгу