Владимир Ивановский - Технический углерод. Процессы и аппараты. Дополнительные материалы

Здесь есть возможность читать онлайн «Владимир Ивановский - Технический углерод. Процессы и аппараты. Дополнительные материалы» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Год выпуска: 2018, Жанр: Технические науки, pedagogy_book, Детская образовательная литература, на русском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Технический углерод. Процессы и аппараты. Дополнительные материалы: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Технический углерод. Процессы и аппараты. Дополнительные материалы»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

В книге рассмотрены наиболее актуальные для производителей технического углерода процессы: применение циркониевых огнеупоров в реакторах для получения техуглерода; обеспечение высокотемпературного нагрева воздуха,подаваемого в реакторы, и использование отходящих газов, образующихся при производстве техуглерода.

Технический углерод. Процессы и аппараты. Дополнительные материалы — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Технический углерод. Процессы и аппараты. Дополнительные материалы», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Другим важным свойством огнеупоров, применяемых в промышленности технического углерода, является термическая стойкость (термостойкость). Как уже отмечалось, под термостойкостью понимают способность огнеупоров сохранять целостность при резких колебаниях температуры. Другими словами, способность выдерживать резкие колебания температуры не растрескиваясь и не разрушаясь. Растрескивание или разрушение огнеупорных изделий при резких изменениях температуры объясняется возникновением в них напряжений при увеличении или уменьшении объёма. При нагревании температура наружных слоёв огнеупорных изделий значительно выше, чем внутренних, причём эта разница тем больше, чем выше скорость подъёма температуры при нагревании. Под влиянием термического расширения при нагревании, то есть увеличении объёма, наружные слои огнеупорных изделий расширяются значительно больше, чем холодные слои внутренней их части, при этом в определённых слоях огнеупорных изделий появляются скалывающие напряжения и, если по своей величине они превосходят силы сцепления частиц изделий между собой, то в них появляются трещины и отколы. При охлаждении наружные слои остывают быстрее, чем внутренние, причём уменьшение объёма наружных слоёв всегда происходит с опережением изменения объёма внутренних, более нагретых слоёв. Возникающие при этом растягивающие напряжения так же приводят к растрескиванию и разрушению огнеупоров. Термостойкость огнеупорного изделия определяется количеством теплосмен, то есть количеством попеременных нагревов до 1300⁰С. и охлаждения в проточной воде до потери 20% веса первоначального образца вследствие его растрескивания. Термостойкость огнеупорных изделий в основном зависит от их структуры и природы исходного сырья, причём, чем меньше происходит изменение объёма огнеупорных изделий при резком нагревании и охлаждении, тем выше их термостойкость.

Для заводских технологов самое главное не допускать таких резких изменений температуры, принимая соответствующие меры при аварийных ситуациях. Необходимо также строго соблюдать графики разогрева реакторов, инструкции по пуску и остановке технологических потоков, не допускать попадания воды на футеровку. Что касается самого значения термостойкости, то 99%ый корунд имеет высокую термостойкость—более 30 теплосмен/1.7.7./. Для сравнения шамотные огнеупоры выдерживают только 6 теплосмен, а муллитокорундовые с содержанием окиси алюминия 90%—12 теплосмен/1.7.7./. Кроме того, в этом же источнике указывается, что неформованные огнеупоры имеют меньший коэффициент объёмного расширения и более высокую термостойкость, то есть это непосредственно относится и к огнеупорам, изготавливаемым на заводах техуглерода. Это же отмечается и в источнике/1.7.9./.

В современных реакторах по получению техуглерода в смесительном сопле развивается скорость газов 500м/сек и выше, поэтому в этой зоне реактора огнеупоры подвергаются эрозии, то есть поверхностному разрушению (в прямом переводе с латинского – разъеданию). Считается, что эрозионное разрушение можно значительно уменьшить, применяя в переходной втулке хромистый корунд /1.7.7./. Это же отмечается и в зарубежной информации по огнеупорам. Однако по данным источника/1.7.6./ бетон из хромистого корунда имеет такое же значение истираемости, как и бетон на основе корунда. Устойчивость к истиранию определялась по DIN EN 102. Омский ЗТУ использовал хромистый корунд с содержанием 12% окиси хрома в переходных втулках реакторов с целью исключить контакт чистого корунда с цирконием, что приводит при определённых условиях к образованию оплава в месте контакта разнородных блоков. Причины этого будут подробно объяснены в следующем разделе. Основной цели удалось добиться, но оказалось, что блоки из хромистого корунда подвергались такой же эрозии, что и чистый корунд. Почему это происходит пока не ясно, но это необходимо установить. Хромистый корунд изготавливает для Омского завода Верхнепышменский опытный завод огнеупоров. Огнеупорность набивной массы (порошка) определена УКРНИИО и она составила 2125⁰С., что позволяет применять такие огнеупоры при температуре 1900–1920⁰С. Применение этих огнеупоров в переходных втулках реакторов и в начальной части зоны реакции должно снизить вероятность разрушения огнеупоров реакторов при авариях. Особенно это важно в связи с необходимостью дальнейшего повышения температуры в камерах горения реакторов. В отношении эрозии нужно добавить, что она не может отразиться на работе реактора, если геометрические размеры втулки не изменились.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Технический углерод. Процессы и аппараты. Дополнительные материалы»

Представляем Вашему вниманию похожие книги на «Технический углерод. Процессы и аппараты. Дополнительные материалы» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Технический углерод. Процессы и аппараты. Дополнительные материалы»

Обсуждение, отзывы о книге «Технический углерод. Процессы и аппараты. Дополнительные материалы» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x