1 ...6 7 8 10 11 12 ...17
Остаётся лишь вычислить отношение и получить результат (1.2).
Получаемое число действительно больше 1 000, то есть сила на расстоянии всего 15 см уже больше силы притяжении всей планеты в 1 046,9 раз. Таким образом, в конце концов, Перрену удалось получить воду только с указанными диаметром частиц – 0,5 (5 из 10 частей), 0,46, 0,37, 0,21 и 0,14 микрона (1 тысячная доля миллиметра или 10 —6 м, что соответствует делению 1/1000000). Ну и наконец, получив такие жидкости только с определённым типом частиц гуммигута (такие жидкости называются эмульсиями), Перрен решил поэкспериментировать и понаблюдать за ними в микроскопе. Наблюдая за ними повернув всю кюветку на бок, Перрен заметил, что эти частички уменьшаются с увеличением высоты. Если вначале они заполняли равномерно или хаотично всю жидкость, то затем они уменьшались с высотой, ровно также как уменьшается воздух в верхних слоях атмосферы. А это уже была мысль! Если это сравнить с уменьшением воздуха на больших высотах, то можно установить закономерность. Но чтобы это проверить Перрен решил сосчитать эти зёрнышки на каждой высоте.
Увы, фотографировать их не получалось, ведь фотографии получались слишком не чёткие из-за малого размера в менее чем 0,5 микрон и Перрен по нескольку раз измерял число частиц гуммигута на разной высоте, поскольку частички двигались, не получалось точного подсчёта, поэтому Перрену приходилось даже на одной высоте считать несколько раз, а потом говорить среднее число. Так в один раз, он провёл расчёт на высоте 5, 35, 65 и 95 микрон. И получалось, что число частиц на высоте 35 микрон было равно почти половине числа частиц на высоте 5 микрон, а высоте 65 – половине 35 и т. д. А это уже прекрасно попадало под закон уменьшение атмосферного давления (силы давления кислорода на нашу планету) с высотой, которую ещё 17 столетии определил Блез Паскаль, знаменитый французский учёный. Он измерял количество кислорода, при помощи барометра Торричелли, устройства для измерения давления, принцип которой состоит в том, что при нормальном давлении воздуха сверху, ртуть в трубке находится на определённой высоте, когда давление становится меньше, ртуть может подниматься, а если давление увеличивается, то наоборот – спадает, если же давления нет, как и притяжения – то это некое подобие невесомости. Вычислив разницу в слоях атмосферы, Паскаль ещё тогда определил, что кислород уменьшается с увеличением высоты на каждые 5 км. Но почему здесь уменьшение частиц гуммигута в 2 раза только с 5 до 35, а в атмосфере с 5 до 10, даже если не учесть масштабы?
А всё дело в частицах, ведь в атмосфере – кислород, а здесь частички гуммигута, насколько причём большие, что их можно увидеть в микроскоп, их диаметр 0,21 микрон. Также закон изменяется и для азота, и для углекислого газа и т. д. из-за разности масс молекул. И если считать э4ту эмульсию как маленькую атмосферу, то уже можно вычислить настоящую массу атома! Проделать этот расчёт не так уж и сложно, высота, на которой плотность кислорода становится в 2 раза меньше – 5 км, а для гуммигута – 30 микрон. А 5 км в 165 000 000 раз больше, чем 30 микрон, следовательно, 1 такой шарик гуммигута с диаметров в 0,21 микрона в 165 000 000 раз больше молекулы воздуха. А подсчитать массу этого гуммигутового шарика проще простого.
Отношение массы 1 кубического метра гуммигута (в объёме куба с размерами в 1 метр ширины, 1 метр высоты и 1 метр длины) на его массу, такое же, как и у этого шарика гуммигута и равно 1 000 кг/м 3(килограмм на кубический метр) или 10 3 кг/м 3(10 в кубе). А объём сферы для шарика гуммигута, также находится просто. Ведь для того, чтобы вычислить объём сферы, необходимо круг прокружить в пространстве, то есть умножить на его площадь, площадь второго круга и тогда получится и заодно вычесть ту часть круга, где такой «оборот» прошёлся 2 раза. В итоге получается формула, выводимая наподобие формулы для площади круга (1.3).
Такой объём соответствует массе, с учётом силы Архимеда, то есть силой, которая выталкивает из воды, поскольку частички гуммигута находятся в воде, а не в воздухе составляет примерно 10 —14 грамм. И если это зерно больше молекулы кислорода в 165 миллионов раз, следовательно, масса атома кислорода составляет 5,33*10 —23 грамм. А это уже, как можно узнать из сравнений масс водорода и кислорода (с учётом, что в молекуле кислорода 2 атома, поскольку это газ) в 32 раза больше чем масса водорода, следовательно, масса атома водорода составляет 1,674*10 —27 кг, то есть в 1 грамме водорода уже содержится 597 371 565 113 500 597 371 565 114 атомов водорода! И так, можно было уже сравнивать массу атома с а. е. м., получив, что масса атома водорода составляет 1,007825 а. е. м. Именно таким образом Перрен смог сделать казалось бы невозможное – взвесить атомы и молекулы и теперь атомы и молекулы были не сказкой, а настоящей наукой с точными расчётами, формулами и указаниями!
Читать дальше