Вместе с тем полупроводниковые приборы в настоящее время обладают следующими недостатками:
1) параметры и характеристики отдельных экземпляров приборов данного типа имеют значительный разброс;
2) свойства и параметры приборов сильно зависят от температуры;
3) наблюдается изменение свойств приборов с течением времени (старение);
4) их собственные шумы в ряде случаев больше, нежели у электронных приборов;
5) большинство типов транзисторов непригодно для работы на частотах выше десятков мегагерц;
6) входное сопротивление у большинства транзисторов значительно меньше, чем у электронных ламп;
7) транзисторы пока еще не изготавливают для таких больших мощностей, как электровакуумные приборы;
8) работа большинства полупроводниковых приборов резко ухудшается под действием радиоактивного излучения.
Транзисторы успешно применяются в усилителях, приемниках, передатчиках, генераторах, телевизорах, измерительных приборах, импульсных схемах, электронных счетных машинах и др. Использование полупроводниковых приборов дает огромную экономию в расходовании электрической энергии источников питания и позволяет во много раз уменьшить размеры аппаратуры.
Ведутся исследования по улучшению полупроводниковых приборов по применению для них новых материалов. Созданы полупроводниковые выпрямители на токи в тысячи ампер. Применение кремния вместо германия позволяет эксплуатировать приборы при температуре до 125" С и выше. Созданы транзисторы для частот до сотен мегагерц и более, а также новые типы полупроводниковых приборов для сверхвысоких частот. Замена электронных ламп полупроводниковыми приборами успешно осуществлена во многих радиотехнических устройствах. Промышленность выпускает большое количество полупроводниковых диодов и транзисторов различных типов.
3. ДВИЖЕНИЕ ЭЛЕКТРОНОВ В ОДНОРОДНОМ ЭЛЕКТРИЧЕСКОМ ПОЛЕ
Взаимодействие электронов с электрическим полем является основным процессом в электровакуумных и полупроводниковых приборах.
Электрон является частицей материи с отрицательным электрическим зарядом, у которого абсолютное значение e = 1,610-19Кл. Масса неподвижного электрона равна m = 9,110-28г. С возрастанием скорости движения масса электронов увеличивается. теоретически при скорости движения, равной с = 3·108м/с, масса электрона должна стать бесконечно большой. В обычных электровакуумных приборах скорость электронов не превышает 0,1с. При этом условии можно считать массу электрона постоянной, равной т.
Если разность потенциалов между электродами U, а расстояние между ними d, то напряженность поля равна: Е= U/d. Для однородного электрического поля величина Е является постоянной.
Пусть из электрода, имеющего более низкий потенциал, например из катода, вылетает электрон с кинетической энергией W0 и начальной скоростью v0, направленной вдоль силовых линий поля. Поле действует на электрон и ускоряет его движение к электроду, имеющему более высокий потенциал, например к аноду. То есть электрон притягивается к электроду с более высоким потенциалом. В данном случае поле называется ускоряющим.
В ускоряющем поле происходит увеличение кинетической энергии электрона за счет работы поля по перемещению электрона. В соответствии с законом сохранения энергии увеличение кинетической энергии электрона W-W 0 равно работе поля, которая определяется произведением перемещаемого заряда е на пройденную им разность потенциалов U: W-W! = mv2/2 – mv20/2 = eU. Если начальная скорость электрона равна нулю, то W0 = mv20/2 = 0 и W= mv2/2 = eU, т. е. кинетическая энергия электрона равна работе поля. Скорость электрона в ускоряющем поле зависит от пройденной разности по'тенциалов.
Пусть направление начальной скорости электрона v0 противоположно силе F, действующей на электрон со стороны поля, т. е. электрон вылетает с некоторой начальной скоростью из электрода с более высоким потенциалом. Так как сила F направлена навстречу скорости v0, то электрон тормозится и движется прямолинейно, равномерно замедленно. Поле в этом случае называется тормозящим. Следовательно, данное поле для одних электронов является ускоряющим, а для других – тормозящим в зависимости от направления начальной скорости электрона. В тормозящем поле электрон отдает энергию полю. В обратном направлении электрон движется без начальной скорости в ускоряющем поле, которое возвращает электрону энергию, потерянную им при замедленном движении.
Читать дальше
Конец ознакомительного отрывка
Купить книгу