Какие же возможности улучшения топлив указывает химия?
Авиация всегда работала и работает на углеводородных топливах, получаемых из нефти. В век авиации поршневой это был бензин, теперь — главным образом керосин. А можно ли из нефти получить лучшие топлива?
Следует прямо сказать, что радикального улучшения топлива этим путем добиться нельзя. Чтобы решить задачу, нужно основательно «перетряхнуть» всю периодическую систему элементов Менделеева. Наиболее подходящими могут оказаться топлива на базе совершенно необычных, на первый взгляд, химических элементов. Вот такие-то «экзотические» топлива и исследуются в настоящее время.
Первые результаты оказываются довольно обнадеживающими. Некоторые из наиболее перспективных топлив будущего позволят существенно увеличить продолжительность и, следовательно, дальность полета. Кстати сказать, некоторые из таких «экзотоплив» значительно улучшают также сгорание на большой высоте. Понятно, что для успешного применения этих топлив придется решить немало задач, например удешевить их производство, устранить ядовитость некоторых из них, коррозийное воздействие на металлы других и т. д. Но можно не сомневаться, что в авиации завтрашнего дня «экзотоплива» займут почетное место.
Особенно интересны среди них так называемые свободные радикалы. Это — электрически нейтральные частицы, обломки молекул, обладающие большой химической энергией, которая выделяется при воссоединении их снова в молекулы. Радикалами являются и атомы элементов, обычно существующих в виде молекул, например атомы водорода, кислорода, азота. Когда молекула водорода расщепляется на атомы, то на это затрачивается большая энергия, чаще всего — электрическая (такое расщепление осуществляется обычно в электрическом разряде). Стоит атомам снова образовать молекулу водорода, как та же энергия выделяется уже в виде тепла. Если подобное воссоединение (или, как говорят, рекомбинация) молекул произойдет в камере сгорания двигателя, то из него наружу через сопло будет вытекать струя водорода с огромной скоростью, в несколько раз большей, чем у обычных топлив.
Но увы, использовать это «экзотопливо» очень непросто. Все радикалы обычно так стремительно рекомбинируют, что их сохранение в «нетленном» виде практически невозможно. Только в самое последнее время появились основанные на ряде удачных опытов надежды, что удастся сохранять свободные радикалы, в том числе и атомы водорода, замораживая их почти до абсолютного нуля.
Практически это, конечно, осуществить трудно, но возможно. А это главное. Можно думать, что свободные радикалы, в частности атомарные топлива, займут почетное место среди «экзотоплив» будущего.
Однако и эти топлива не решают все же задачи увеличения продолжительности полета. А между тем современная наука и техника знают, как решить эту проблему. Знают, потому что известно и уже применяется топливо, теплотворность которого не просто больше, чем у современных топлив, но больше в миллионы раз. Ну, конечно, речь идет о ядерном горючем, об атомной энергии!
Атомный двигатель в авиации смог бы произвести настоящую революцию, вторую после появления реактивных двигателей. Возможности авиации выросли бы неизмеримо. Самое главное, стал бы возможным сколь угодно длительный сверхзвуковой полет, тогда как сейчас в авйации существует своеобразное «золотое правило рычага». Оно гласит, что чем быстрее осуществляется полет, тем менее продолжительным он является.
Атомный двигатель снимет это ограничение, выведя авиацию из того заколдованного круга, в котором она находится. Неудивительно, что работа над созданием атомного авиационного двигателя так настойчиво ведется в ряде стран. Нет сомнений, что он будет создан и займет подобающее ему место в авиации завтрашнего дня.
Как же может выглядеть атомный авиационный двигатель?
Пожалуй, прежде всего напрашивается устройство атомного реактивного двигателя, получившего название «псевдоракеты». Действительно, что могло бы быть проще атомного двигателя, из которого наружу вытекали бы осколки ядер, образующиеся при распаде ядерного горючего — урана или плутония! «Псевдоракетным» он называется потому, что в действительности такой двигатель создать нельзя. Этому препятствует ряд трудностей, но решающей является одна: «псевдоракета» сколько-нибудь значительной тяги могла бы существовать лишь ничтожные доли секунды, так как она практически мгновенно… испарилась бы. Это легко объяснимо: чтобы тяга была большой, из двигателя должно вытекать наружу каждую секунду много продуктов атомного распада. Но ведь один грамм ядерного горючего соответствует почти двум тоннам керосина или бензина. Значит, в таком двигателе выделялось бы огромное количество тепла, соответствующее сгоранию колоссальных количеств бензина. Неудивительно,’ что двигатель испарится.
Читать дальше