Но есть и еще один способ преодоления этой слабости прямоточного двигателя. Вы уже, вероятно, обратили внимание на большое принципиальное сходство прямоточного двигателя и форсажной камеры турбореактивного двигателя: рабочий процесс у них одинаков, да и конструктивное выполнение сходно. По существу, форсажная камера является прямоточным двигателем, установленным непосредственно за турбореактивным, так что турбореактивный двигатель с форсажной камерой представляет собой просто сочетание двигателей двух типов — турбореактивного и прямоточного. Так как в настоящее время скорости полета зще сравнительно малы, то прямоточный двигатель в этих условиях невыгоден и потому используется лишь для кратковременного форсажа, то есть как форсажная камера.
С ростом скорости полета положение изменяется: прямоточный двигатель становится все более выгодным, оттесняя даже основной, турбореактивный двигатель. Это позволяет использовать турбореактивный и прямоточный двигатели в различных комбинациях, в зависимости от режимов полета. На сравнительно малых скоростях работает один турбореактивный двигатель, а прямоточный выключен. На околозвуковых и сверхзвуковых скоростях полета, до 2000–3000 километров в час, работают оба двигателя, причем прямоточный может использоваться периодически как форсажная камера. Затем он начинает работать все время — вместе с турбореактивным. Наконец, при еще больших скоростях работает один прямоточный двигатель. Для этого воздух направляется в прямоточный двигатель, минуя турбореактивный. Подобные схемы не только предлагаются, но и разрабатываются. Возможно, они найдут широкое применение в будущем.
Принципиальное преимущество прямоточного двигателя перед турбореактивным в том, что из-за отсутствия турбины температура газов в прямоточном двигателе зависит только от возможностей топлива. Поэтому-то и скорость истечения, а вместе с ней и тяга оказываются значительно большими, чем у турбореактивных двигателей тех же размеров при одинаковой, достаточно большой, конечно, скорости полета. Ведь если максимальная температура газов в турбореактивном двигателе не превышает в настоящее время, как правило, 900–950°, то в прямоточном она может достигать 1500–1800° и более.
8* При движении самолета с большой скоростью на его поверхность действует не только избыточное давление там, где воздух тормозится, но и разрежение в тех местах, где воздух движется с очень большой скоростью. Вот так же при урагане стремительно мчащийся воздух создает разрежение над крышами домов и этим срывает крыши. Такое же разрежение приводит и к срыву обшивки быстролетящего самолета. Недаром обшивка крыла современных скоростных самолетов делается неизмеримо более толстой и прочной, чем на самолетах сравнительно не очень далекого прошлого.
9* Правда, само сжатие в компрессоре в результате скоростного напора несколько снижается. Так сказывается на работе компрессора повышение температуры входящего в него воздуха, — сжимать нагретый воздух труднее.
10* Конечно, такую тягу он разовьет только при полете у земли, в плотном воздухе. На больших высотах, где подобный высокоскоростной полет только и возможен, тяга будет несравненно меньше.
11* Например, снаряд «Бомарк», США (по журналу «Авиэйшн Уик», 10 ноября 1958 г., и др.).
Возможная силовая установка самолета, состоящая из турбореактивного (вверху) и прямоточного (внизу) двигателей. Показана и заслонка, направляющая воздух в один из двигателей.
Но все же, как и в турбореактивном двигателе, именно температура газов ограничивает возможности использования прямоточного двигателя, именно она ставит предел достигаемой с его помощью скорости полета. Чтобы понять это, достаточно вспомнить, что сжатие воздуха связано с его нагревом. Очевидно, будет нагреваться и воздух, поступающий в прямоточный двигатель в полете, ибо этот воздух тоже сильно сжимается. Но характер такого нагрева оказывается действительно неожиданным: при скорости полета, вдвое превосходящей скорость звука, температура воздуха, поступающего в двигатель, составит примерно 250°, а при пятикратном превышении ее около 1500°! Значит, в прямоточный двигатель будет втекать струя воздуха, раскаленного гораздо сильнее, чем газы, поступающие на лопатки турбореактивного двигателя!
Читать дальше