1 ...7 8 9 11 12 13 ...88 В заключение приведем наиболее существенные недостатки описанных выше вариантов автогенераторных высокочастотных преобразователей напряжения, ограничивающие их применение. К ним относятся:
• сложность получения симметричной формы импульсного сигнала и как следствие подмагничивание силового трансформатора, что ограничивает выходную мощность преобразователя;
• необходимость использования транзисторов с большим запасом по максимальным току и напряжению из-за возможных скачков тока и напряжения во время коммутационных процессов;
• помехи, возникающие во время коммутационных процессов, требуют тщательной дополнительной фильтрации, что может ограничивать их применение при работе с аналоговыми цепями;
• большая зависимость частоты автогенерации от параметров элементов схемы, первичного напряжения питания и температуры;
• возможная нестабильность работы при изменении нагрузки и критичность к параметрам цепи фильтрации вторичного напряжения (более подробное описание приведено в примере преобразователя с насыщающимся трансформатором);
• невозможность удовлетворительной регулировки уровня напряжения вторичной цепи прямым воздействием на автогенераторный каскад. Необходимость установки стабилизаторов во вторичной цепи и в этом случае существенное снижение КПД;
• трудность тестирования силового каскада преобразователя при проведении ремонтных работ.
Последний фактор имеет немаловажное значение. Режимы автогенератора рассчитываются с учетом реальных условий его функционирования и жестко от них зависят. Оценка и анализ отказа, особенно связанного с силовым каскадом, может проводиться только при отключенном напряжении питания. Безопасное включение сетевого преобразователя (с первичным питанием от 220 В) на пониженное напряжение в «щадящем» режиме для тестирования может оказаться бессмысленным, так как условия самовозбуждения не будут выполнены и преобразователь не запустится. Если произведенная замена неисправных элементов окажется неправильной или неполной, может произойти повторный отказ, и в результате выйдут из строя новые элементы. Ремонт таких источников требует особого внимания, предварительной подготовки и тщательного всестороннего анализа возникшей проблемы.
Перечисленные недостатки описанных выше преобразователей накладывают серьезные ограничения на их применение. В настоящее время более широко используются источники питания, структурная схема которых соответствует приведенной на рис. 1.2. Такие источники питания частично лишены недостатков, свойственных автогенераторным преобразователям. Они выгодно отличаются существенно большей экономичностью, предсказуемостью параметров, удобнее при проведении ремонтных и диагностических работ (эти вопросы будут подробно рассмотрены при описании методов поиска неисправностей в реальных схемах).
В значительной степени сложность и экономичность схемы источника питания зависит от выбранного способа управления силовым каскадом и методов стабилизации вторичных напряжений. Рассмотрим несколько возможных вариантов решения этих проблем.
1.2.2. Методы стабилизации напряжения в импульсных преобразователях напряжения
Как отмечалось выше, одним из основных преимуществ ИБП является возможность преобразования первичной электрической энергии с более высоким КПД по сравнению с обычными трансформаторными источниками питания. Чаще всего это достигается за счет стабилизации выходного напряжения воздействием на процесс функционирования силового усилительного каскада преобразователя напряжения. Только в многоканальных ИБП с различными нагрузочными возможностями каналов при необходимости применяются дополнительные линейные или импульсные стабилизаторы вторичного напряжения.
Для стабилизации величины выходного напряжения используются методы регулирования количества энергии, поступающей во вторичную цепь. Основными среди них являются: ШИМ, ЧИМ и релейная стабилизация напряжения. Эти методы отличаются способами воздействия на силовой (усилительный) каскад высокочастотного преобразователя, активные элементы которого работают в ключевом режиме. Как правило, система управления выполняется на маломощных компонентах, представляющих собой комбинацию аналоговых и цифровых элементов. Согласно рис. 1.2 узел регулирования состоит из:
• измерительной цепи, определяющей отклонение реальной величины напряжения нагрузки от номинального значения;
Читать дальше
Конец ознакомительного отрывка
Купить книгу